lbrycrd/src/serialize.h
Anthony Fieroni 2ffd5897af Remove duplicate code
Signed-off-by: Anthony Fieroni <bvbfan@abv.bg>
2020-01-15 14:39:48 -07:00

1001 lines
30 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2018 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_SERIALIZE_H
#define BITCOIN_SERIALIZE_H
#include <compat/endian.h>
#include <algorithm>
#include <assert.h>
#include <ios>
#include <limits>
#include <map>
#include <memory>
#include <set>
#include <stdint.h>
#include <string>
#include <string.h>
#include <utility>
#include <vector>
#include <prevector.h>
#include <span.h>
static const unsigned int MAX_SIZE = 0x02000000;
/**
* Dummy data type to identify deserializing constructors.
*
* By convention, a constructor of a type T with signature
*
* template <typename Stream> T::T(deserialize_type, Stream& s)
*
* is a deserializing constructor, which builds the type by
* deserializing it from s. If T contains const fields, this
* is likely the only way to do so.
*/
struct deserialize_type {};
constexpr deserialize_type deserialize {};
/**
* Used to bypass the rule against non-const reference to temporary
* where it makes sense with wrappers.
*/
template<typename T>
inline T& REF(const T& val)
{
return const_cast<T&>(val);
}
/**
* Used to acquire a non-const pointer "this" to generate bodies
* of const serialization operations from a template
*/
template<typename T>
inline T* NCONST_PTR(const T* val)
{
return const_cast<T*>(val);
}
//! Safely convert odd char pointer types to standard ones.
inline char* CharCast(char* c) { return c; }
inline char* CharCast(unsigned char* c) { return (char*)c; }
inline const char* CharCast(const char* c) { return c; }
inline const char* CharCast(const unsigned char* c) { return (const char*)c; }
/*
* Lowest-level serialization and conversion.
* @note Sizes of these types are verified in the tests
*/
template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
{
s.write((char*)&obj, 1);
}
template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
{
obj = htole16(obj);
s.write((char*)&obj, 2);
}
template<typename Stream> inline void ser_writedata16be(Stream &s, uint16_t obj)
{
obj = htobe16(obj);
s.write((char*)&obj, 2);
}
template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
{
obj = htole32(obj);
s.write((char*)&obj, 4);
}
template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
{
obj = htole64(obj);
s.write((char*)&obj, 8);
}
template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
{
uint8_t obj;
s.read((char*)&obj, 1);
return obj;
}
template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
{
uint16_t obj;
s.read((char*)&obj, 2);
return le16toh(obj);
}
template<typename Stream> inline uint16_t ser_readdata16be(Stream &s)
{
uint16_t obj;
s.read((char*)&obj, 2);
return be16toh(obj);
}
template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
{
uint32_t obj;
s.read((char*)&obj, 4);
return le32toh(obj);
}
template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
{
uint64_t obj;
s.read((char*)&obj, 8);
return le64toh(obj);
}
inline uint64_t ser_double_to_uint64(double x)
{
union { double x; uint64_t y; } tmp;
tmp.x = x;
return tmp.y;
}
inline uint32_t ser_float_to_uint32(float x)
{
union { float x; uint32_t y; } tmp;
tmp.x = x;
return tmp.y;
}
inline double ser_uint64_to_double(uint64_t y)
{
union { double x; uint64_t y; } tmp;
tmp.y = y;
return tmp.x;
}
inline float ser_uint32_to_float(uint32_t y)
{
union { float x; uint32_t y; } tmp;
tmp.y = y;
return tmp.x;
}
/////////////////////////////////////////////////////////////////
//
// Templates for serializing to anything that looks like a stream,
// i.e. anything that supports .read(char*, size_t) and .write(char*, size_t)
//
class CSizeComputer;
enum
{
// primary actions
SER_NETWORK = (1 << 0),
SER_DISK = (1 << 1),
SER_GETHASH = (1 << 2),
};
//! Convert the reference base type to X, without changing constness or reference type.
template<typename X> X& ReadWriteAsHelper(X& x) { return x; }
template<typename X> const X& ReadWriteAsHelper(const X& x) { return x; }
#define READWRITE(...) (::SerReadWriteMany(s, ser_action, __VA_ARGS__))
#define READWRITEAS(type, obj) (::SerReadWriteMany(s, ser_action, ReadWriteAsHelper<type>(obj)))
/**
* Implement three methods for serializable objects. These are actually wrappers over
* "SerializationOp" template, which implements the body of each class' serialization
* code. Adding "ADD_SERIALIZE_METHODS" in the body of the class causes these wrappers to be
* added as members.
*/
#define ADD_SERIALIZE_METHODS \
template<typename Stream> \
void Serialize(Stream& s) const { \
NCONST_PTR(this)->SerializationOp(s, CSerActionSerialize()); \
} \
template<typename Stream> \
void Unserialize(Stream& s) { \
SerializationOp(s, CSerActionUnserialize()); \
}
#ifndef CHAR_EQUALS_INT8
template<typename Stream> inline void Serialize(Stream& s, char a ) { ser_writedata8(s, a); } // TODO Get rid of bare char
#endif
template<typename Stream> inline void Serialize(Stream& s, int8_t a ) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint8_t a ) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int16_t a ) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint16_t a) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int32_t a ) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint32_t a) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int64_t a ) { ser_writedata64(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint64_t a) { ser_writedata64(s, a); }
template<typename Stream> inline void Serialize(Stream& s, float a ) { ser_writedata32(s, ser_float_to_uint32(a)); }
template<typename Stream> inline void Serialize(Stream& s, double a ) { ser_writedata64(s, ser_double_to_uint64(a)); }
template<typename Stream, int N> inline void Serialize(Stream& s, const char (&a)[N]) { s.write(a, N); }
template<typename Stream, int N> inline void Serialize(Stream& s, const unsigned char (&a)[N]) { s.write(CharCast(a), N); }
template<typename Stream> inline void Serialize(Stream& s, const Span<const unsigned char>& span) { s.write(CharCast(span.data()), span.size()); }
template<typename Stream> inline void Serialize(Stream& s, const Span<unsigned char>& span) { s.write(CharCast(span.data()), span.size()); }
#ifndef CHAR_EQUALS_INT8
template<typename Stream> inline void Unserialize(Stream& s, char& a ) { a = ser_readdata8(s); } // TODO Get rid of bare char
#endif
template<typename Stream> inline void Unserialize(Stream& s, int8_t& a ) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a ) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, int16_t& a ) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, int32_t& a ) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, int64_t& a ) { a = ser_readdata64(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a) { a = ser_readdata64(s); }
template<typename Stream> inline void Unserialize(Stream& s, float& a ) { a = ser_uint32_to_float(ser_readdata32(s)); }
template<typename Stream> inline void Unserialize(Stream& s, double& a ) { a = ser_uint64_to_double(ser_readdata64(s)); }
template<typename Stream, int N> inline void Unserialize(Stream& s, char (&a)[N]) { s.read(a, N); }
template<typename Stream, int N> inline void Unserialize(Stream& s, unsigned char (&a)[N]) { s.read(CharCast(a), N); }
template<typename Stream> inline void Unserialize(Stream& s, Span<unsigned char>& span) { s.read(CharCast(span.data()), span.size()); }
template<typename Stream> inline void Serialize(Stream& s, bool a) { char f=a; ser_writedata8(s, f); }
template<typename Stream> inline void Unserialize(Stream& s, bool& a) { char f=ser_readdata8(s); a=f; }
#include <claimtrie_serial.h>
/**
* Compact Size
* size < 253 -- 1 byte
* size <= USHRT_MAX -- 3 bytes (253 + 2 bytes)
* size <= UINT_MAX -- 5 bytes (254 + 4 bytes)
* size > UINT_MAX -- 9 bytes (255 + 8 bytes)
*/
inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
{
if (nSize < 253) return sizeof(unsigned char);
else if (nSize <= std::numeric_limits<unsigned short>::max()) return sizeof(unsigned char) + sizeof(unsigned short);
else if (nSize <= std::numeric_limits<unsigned int>::max()) return sizeof(unsigned char) + sizeof(unsigned int);
else return sizeof(unsigned char) + sizeof(uint64_t);
}
inline void WriteCompactSize(CSizeComputer& os, uint64_t nSize);
template<typename Stream>
void WriteCompactSize(Stream& os, uint64_t nSize)
{
if (nSize < 253)
{
ser_writedata8(os, nSize);
}
else if (nSize <= std::numeric_limits<unsigned short>::max())
{
ser_writedata8(os, 253);
ser_writedata16(os, nSize);
}
else if (nSize <= std::numeric_limits<unsigned int>::max())
{
ser_writedata8(os, 254);
ser_writedata32(os, nSize);
}
else
{
ser_writedata8(os, 255);
ser_writedata64(os, nSize);
}
return;
}
template<typename Stream>
uint64_t ReadCompactSize(Stream& is)
{
uint8_t chSize = ser_readdata8(is);
uint64_t nSizeRet = 0;
if (chSize < 253)
{
nSizeRet = chSize;
}
else if (chSize == 253)
{
nSizeRet = ser_readdata16(is);
if (nSizeRet < 253)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
else if (chSize == 254)
{
nSizeRet = ser_readdata32(is);
if (nSizeRet < 0x10000u)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
else
{
nSizeRet = ser_readdata64(is);
if (nSizeRet < 0x100000000ULL)
throw std::ios_base::failure("non-canonical ReadCompactSize()");
}
if (nSizeRet > (uint64_t)MAX_SIZE)
throw std::ios_base::failure("ReadCompactSize(): size too large");
return nSizeRet;
}
/**
* Variable-length integers: bytes are a MSB base-128 encoding of the number.
* The high bit in each byte signifies whether another digit follows. To make
* sure the encoding is one-to-one, one is subtracted from all but the last digit.
* Thus, the byte sequence a[] with length len, where all but the last byte
* has bit 128 set, encodes the number:
*
* (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
*
* Properties:
* * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
* * Every integer has exactly one encoding
* * Encoding does not depend on size of original integer type
* * No redundancy: every (infinite) byte sequence corresponds to a list
* of encoded integers.
*
* 0: [0x00] 256: [0x81 0x00]
* 1: [0x01] 16383: [0xFE 0x7F]
* 127: [0x7F] 16384: [0xFF 0x00]
* 128: [0x80 0x00] 16511: [0xFF 0x7F]
* 255: [0x80 0x7F] 65535: [0x82 0xFE 0x7F]
* 2^32: [0x8E 0xFE 0xFE 0xFF 0x00]
*/
/**
* Mode for encoding VarInts.
*
* Currently there is no support for signed encodings. The default mode will not
* compile with signed values, and the legacy "nonnegative signed" mode will
* accept signed values, but improperly encode and decode them if they are
* negative. In the future, the DEFAULT mode could be extended to support
* negative numbers in a backwards compatible way, and additional modes could be
* added to support different varint formats (e.g. zigzag encoding).
*/
enum class VarIntMode { DEFAULT, NONNEGATIVE_SIGNED };
template <VarIntMode Mode, typename I>
struct CheckVarIntMode {
constexpr CheckVarIntMode()
{
static_assert(Mode != VarIntMode::DEFAULT || std::is_unsigned<I>::value, "Unsigned type required with mode DEFAULT.");
static_assert(Mode != VarIntMode::NONNEGATIVE_SIGNED || std::is_signed<I>::value, "Signed type required with mode NONNEGATIVE_SIGNED.");
}
};
template<VarIntMode Mode, typename I>
inline unsigned int GetSizeOfVarInt(I n)
{
CheckVarIntMode<Mode, I>();
int nRet = 0;
while(true) {
nRet++;
if (n <= 0x7F)
break;
n = (n >> 7) - 1;
}
return nRet;
}
template<typename I>
inline void WriteVarInt(CSizeComputer& os, I n);
template<typename Stream, VarIntMode Mode, typename I>
void WriteVarInt(Stream& os, I n)
{
CheckVarIntMode<Mode, I>();
unsigned char tmp[(sizeof(n)*8+6)/7];
int len=0;
while(true) {
tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
if (n <= 0x7F)
break;
n = (n >> 7) - 1;
len++;
}
do {
ser_writedata8(os, tmp[len]);
} while(len--);
}
template<typename Stream, VarIntMode Mode, typename I>
I ReadVarInt(Stream& is)
{
CheckVarIntMode<Mode, I>();
I n = 0;
while(true) {
unsigned char chData = ser_readdata8(is);
if (n > (std::numeric_limits<I>::max() >> 7)) {
throw std::ios_base::failure("ReadVarInt(): size too large");
}
n = (n << 7) | (chData & 0x7F);
if (chData & 0x80) {
if (n == std::numeric_limits<I>::max()) {
throw std::ios_base::failure("ReadVarInt(): size too large");
}
n++;
} else {
return n;
}
}
}
#define VARINT(obj, ...) WrapVarInt<__VA_ARGS__>(REF(obj))
#define COMPACTSIZE(obj) CCompactSize(REF(obj))
#define LIMITED_STRING(obj,n) LimitedString< n >(REF(obj))
template<VarIntMode Mode, typename I>
class CVarInt
{
protected:
I &n;
public:
explicit CVarInt(I& nIn) : n(nIn) { }
template<typename Stream>
void Serialize(Stream &s) const {
WriteVarInt<Stream,Mode,I>(s, n);
}
template<typename Stream>
void Unserialize(Stream& s) {
n = ReadVarInt<Stream,Mode,I>(s);
}
};
/** Serialization wrapper class for big-endian integers.
*
* Use this wrapper around integer types that are stored in memory in native
* byte order, but serialized in big endian notation. This is only intended
* to implement serializers that are compatible with existing formats, and
* its use is not recommended for new data structures.
*
* Only 16-bit types are supported for now.
*/
template<typename I>
class BigEndian
{
protected:
I& m_val;
public:
explicit BigEndian(I& val) : m_val(val)
{
static_assert(std::is_unsigned<I>::value, "BigEndian type must be unsigned integer");
static_assert(sizeof(I) == 2 && std::numeric_limits<I>::min() == 0 && std::numeric_limits<I>::max() == std::numeric_limits<uint16_t>::max(), "Unsupported BigEndian size");
}
template<typename Stream>
void Serialize(Stream& s) const
{
ser_writedata16be(s, m_val);
}
template<typename Stream>
void Unserialize(Stream& s)
{
m_val = ser_readdata16be(s);
}
};
class CCompactSize
{
protected:
uint64_t &n;
public:
explicit CCompactSize(uint64_t& nIn) : n(nIn) { }
template<typename Stream>
void Serialize(Stream &s) const {
WriteCompactSize<Stream>(s, n);
}
template<typename Stream>
void Unserialize(Stream& s) {
n = ReadCompactSize<Stream>(s);
}
};
template<size_t Limit>
class LimitedString
{
protected:
std::string& string;
public:
explicit LimitedString(std::string& _string) : string(_string) {}
template<typename Stream>
void Unserialize(Stream& s)
{
size_t size = ReadCompactSize(s);
if (size > Limit) {
throw std::ios_base::failure("String length limit exceeded");
}
string.resize(size);
if (size != 0)
s.read((char*)string.data(), size);
}
template<typename Stream>
void Serialize(Stream& s) const
{
WriteCompactSize(s, string.size());
if (!string.empty())
s.write((char*)string.data(), string.size());
}
};
template<VarIntMode Mode=VarIntMode::DEFAULT, typename I>
CVarInt<Mode, I> WrapVarInt(I& n) { return CVarInt<Mode, I>{n}; }
template<typename I>
BigEndian<I> WrapBigEndian(I& n) { return BigEndian<I>(n); }
/**
* Forward declarations
*/
/**
* string
*/
template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str);
template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str);
/**
* prevector
* prevectors of unsigned char are a special case and are intended to be serialized as a single opaque blob.
*/
template<typename Stream, unsigned int N, typename T> void Serialize_impl(Stream& os, const prevector<N, T>& v, const unsigned char&);
template<typename Stream, unsigned int N, typename T, typename V> void Serialize_impl(Stream& os, const prevector<N, T>& v, const V&);
template<typename Stream, unsigned int N, typename T> inline void Serialize(Stream& os, const prevector<N, T>& v);
template<typename Stream, unsigned int N, typename T> void Unserialize_impl(Stream& is, prevector<N, T>& v, const unsigned char&);
template<typename Stream, unsigned int N, typename T, typename V> void Unserialize_impl(Stream& is, prevector<N, T>& v, const V&);
template<typename Stream, unsigned int N, typename T> inline void Unserialize(Stream& is, prevector<N, T>& v);
/**
* vector
* vectors of unsigned char are a special case and are intended to be serialized as a single opaque blob.
*/
template<typename Stream, typename T, typename A> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const unsigned char&);
template<typename Stream, typename T, typename A, typename V> void Serialize_impl(Stream& os, const std::vector<T, A>& v, const V&);
template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v);
template<typename Stream, typename T, typename A> void Unserialize_impl(Stream& is, std::vector<T, A>& v, const unsigned char&);
template<typename Stream, typename T, typename A, typename V> void Unserialize_impl(Stream& is, std::vector<T, A>& v, const V&);
template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v);
/**
* pair
*/
template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item);
template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item);
/**
* map
*/
template<typename Stream, typename K, typename T, typename ... Z> void Serialize(Stream& os, const std::map<K, T, Z...>& m);
template<typename Stream, typename K, typename T, typename ... Z> void Unserialize(Stream& is, std::map<K, T, Z...>& m);
/**
* set
*/
template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m);
template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m);
/**
* shared_ptr
*/
template<typename Stream, typename T> void Serialize(Stream& os, const std::shared_ptr<const T>& p);
template<typename Stream, typename T> void Unserialize(Stream& os, std::shared_ptr<const T>& p);
/**
* unique_ptr
*/
template<typename Stream, typename T> void Serialize(Stream& os, const std::unique_ptr<const T>& p);
template<typename Stream, typename T> void Unserialize(Stream& os, std::unique_ptr<const T>& p);
/**
* If none of the specialized versions above matched, default to calling member function.
*/
template<typename Stream, typename T>
inline void Serialize(Stream& os, const T& a)
{
a.Serialize(os);
}
template<typename Stream, typename T>
inline void Unserialize(Stream& is, T&& a)
{
a.Unserialize(is);
}
/**
* string
*/
template<typename Stream, typename C>
void Serialize(Stream& os, const std::basic_string<C>& str)
{
WriteCompactSize(os, str.size());
if (!str.empty())
os.write((char*)str.data(), str.size() * sizeof(C));
}
template<typename Stream, typename C>
void Unserialize(Stream& is, std::basic_string<C>& str)
{
unsigned int nSize = ReadCompactSize(is);
str.resize(nSize);
if (nSize != 0)
is.read((char*)str.data(), nSize * sizeof(C));
}
/**
* prevector
*/
template<typename Stream, unsigned int N, typename T>
void Serialize_impl(Stream& os, const prevector<N, T>& v, const unsigned char&)
{
WriteCompactSize(os, v.size());
if (!v.empty())
os.write((char*)v.data(), v.size() * sizeof(T));
}
template<typename Stream, unsigned int N, typename T, typename V>
void Serialize_impl(Stream& os, const prevector<N, T>& v, const V&)
{
WriteCompactSize(os, v.size());
for (typename prevector<N, T>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
::Serialize(os, (*vi));
}
template<typename Stream, unsigned int N, typename T>
inline void Serialize(Stream& os, const prevector<N, T>& v)
{
Serialize_impl(os, v, T());
}
template<typename Stream, unsigned int N, typename T>
void Unserialize_impl(Stream& is, prevector<N, T>& v, const unsigned char&)
{
// Limit size per read so bogus size value won't cause out of memory
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
while (i < nSize)
{
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
v.resize(i + blk);
is.read((char*)&v[i], blk * sizeof(T));
i += blk;
}
}
template<typename Stream, unsigned int N, typename T, typename V>
void Unserialize_impl(Stream& is, prevector<N, T>& v, const V&)
{
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
unsigned int nMid = 0;
while (nMid < nSize)
{
nMid += 5000000 / sizeof(T);
if (nMid > nSize)
nMid = nSize;
v.resize(nMid);
for (; i < nMid; i++)
Unserialize(is, v[i]);
}
}
template<typename Stream, unsigned int N, typename T>
inline void Unserialize(Stream& is, prevector<N, T>& v)
{
Unserialize_impl(is, v, T());
}
/**
* vector
*/
template<typename Stream, typename T, typename A>
void Serialize_impl(Stream& os, const std::vector<T, A>& v, const unsigned char&)
{
WriteCompactSize(os, v.size());
if (!v.empty())
os.write((char*)v.data(), v.size() * sizeof(T));
}
template<typename Stream, typename T, typename A, typename V>
void Serialize_impl(Stream& os, const std::vector<T, A>& v, const V&)
{
WriteCompactSize(os, v.size());
for (typename std::vector<T, A>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
::Serialize(os, (*vi));
}
template<typename Stream, typename T, typename A>
inline void Serialize(Stream& os, const std::vector<T, A>& v)
{
Serialize_impl(os, v, T());
}
template<typename Stream, typename T, typename A>
void Unserialize_impl(Stream& is, std::vector<T, A>& v, const unsigned char&)
{
// Limit size per read so bogus size value won't cause out of memory
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
while (i < nSize)
{
unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
v.resize(i + blk);
is.read((char*)&v[i], blk * sizeof(T));
i += blk;
}
}
template<typename Stream, typename T, typename A, typename V>
void Unserialize_impl(Stream& is, std::vector<T, A>& v, const V&)
{
v.clear();
unsigned int nSize = ReadCompactSize(is);
unsigned int i = 0;
unsigned int nMid = 0;
while (nMid < nSize)
{
nMid += 5000000 / sizeof(T);
if (nMid > nSize)
nMid = nSize;
v.resize(nMid);
for (; i < nMid; i++)
Unserialize(is, v[i]);
}
}
template<typename Stream, typename T, typename A>
inline void Unserialize(Stream& is, std::vector<T, A>& v)
{
Unserialize_impl(is, v, T());
}
/**
* pair
*/
template<typename Stream, typename K, typename T>
void Serialize(Stream& os, const std::pair<K, T>& item)
{
Serialize(os, item.first);
Serialize(os, item.second);
}
template<typename Stream, typename K, typename T>
void Unserialize(Stream& is, std::pair<K, T>& item)
{
Unserialize(is, item.first);
Unserialize(is, item.second);
}
/**
* map
*/
template<typename Stream, typename K, typename T, typename ... Z>
void Serialize(Stream& os, const std::map<K, T, Z...>& m)
{
WriteCompactSize(os, m.size());
for (const auto& entry : m)
Serialize(os, entry);
}
template<typename Stream, typename K, typename T, typename ... Z>
void Unserialize(Stream& is, std::map<K, T, Z...>& m)
{
m.clear();
unsigned int nSize = ReadCompactSize(is);
typename std::map<K, T, Z...>::iterator mi = m.begin();
for (unsigned int i = 0; i < nSize; i++)
{
std::pair<K, T> item;
Unserialize(is, item);
mi = m.insert(mi, item);
}
}
/**
* set
*/
template<typename Stream, typename K, typename Pred, typename A>
void Serialize(Stream& os, const std::set<K, Pred, A>& m)
{
WriteCompactSize(os, m.size());
for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
Serialize(os, (*it));
}
template<typename Stream, typename K, typename Pred, typename A>
void Unserialize(Stream& is, std::set<K, Pred, A>& m)
{
m.clear();
unsigned int nSize = ReadCompactSize(is);
typename std::set<K, Pred, A>::iterator it = m.begin();
for (unsigned int i = 0; i < nSize; i++)
{
K key;
Unserialize(is, key);
it = m.insert(it, key);
}
}
/**
* unique_ptr
*/
template<typename Stream, typename T> void
Serialize(Stream& os, const std::unique_ptr<const T>& p)
{
Serialize(os, *p);
}
template<typename Stream, typename T>
void Unserialize(Stream& is, std::unique_ptr<const T>& p)
{
p.reset(new T(deserialize, is));
}
/**
* shared_ptr
*/
template<typename Stream, typename T> void
Serialize(Stream& os, const std::shared_ptr<const T>& p)
{
Serialize(os, *p);
}
template<typename Stream, typename T>
void Unserialize(Stream& is, std::shared_ptr<const T>& p)
{
p = std::make_shared<const T>(deserialize, is);
}
/**
* Support for ADD_SERIALIZE_METHODS and READWRITE macro
*/
struct CSerActionSerialize
{
constexpr bool ForRead() const { return false; }
};
struct CSerActionUnserialize
{
constexpr bool ForRead() const { return true; }
};
/* ::GetSerializeSize implementations
*
* Computing the serialized size of objects is done through a special stream
* object of type CSizeComputer, which only records the number of bytes written
* to it.
*
* If your Serialize or SerializationOp method has non-trivial overhead for
* serialization, it may be worthwhile to implement a specialized version for
* CSizeComputer, which uses the s.seek() method to record bytes that would
* be written instead.
*/
class CSizeComputer
{
protected:
size_t nSize;
const int nType;
const int nVersion;
public:
CSizeComputer(int nTypeIn, int nVersionIn) : nSize(0), nType(nTypeIn), nVersion(nVersionIn) {}
void write(const char *psz, size_t _nSize)
{
this->nSize += _nSize;
}
/** Pretend _nSize bytes are written, without specifying them. */
void seek(size_t _nSize)
{
this->nSize += _nSize;
}
template<typename T>
CSizeComputer& operator<<(const T& obj)
{
::Serialize(*this, obj);
return (*this);
}
size_t size() const {
return nSize;
}
int GetVersion() const { return nVersion; }
int GetType() const { return nType; }
};
template<typename Stream>
void SerializeMany(Stream& s)
{
}
template<typename Stream, typename Arg, typename... Args>
void SerializeMany(Stream& s, const Arg& arg, const Args&... args)
{
::Serialize(s, arg);
::SerializeMany(s, args...);
}
template<typename Stream>
inline void UnserializeMany(Stream& s)
{
}
template<typename Stream, typename Arg, typename... Args>
inline void UnserializeMany(Stream& s, Arg&& arg, Args&&... args)
{
::Unserialize(s, arg);
::UnserializeMany(s, args...);
}
template<typename Stream, typename... Args>
inline void SerReadWriteMany(Stream& s, CSerActionSerialize ser_action, const Args&... args)
{
::SerializeMany(s, args...);
}
template<typename Stream, typename... Args>
inline void SerReadWriteMany(Stream& s, CSerActionUnserialize ser_action, Args&&... args)
{
::UnserializeMany(s, args...);
}
template<typename I>
inline void WriteVarInt(CSizeComputer &s, I n)
{
s.seek(GetSizeOfVarInt<I>(n));
}
inline void WriteCompactSize(CSizeComputer &s, uint64_t nSize)
{
s.seek(GetSizeOfCompactSize(nSize));
}
template <typename T>
size_t GetSerializeSize(const T& t, int nType, int nVersion = 0)
{
return (CSizeComputer(nType, nVersion) << t).size();
}
template <typename S, typename T>
size_t GetSerializeSize(const S& s, const T& t)
{
return (CSizeComputer(s.GetType(), s.GetVersion()) << t).size();
}
template <typename S, typename... T>
size_t GetSerializeSizeMany(const S& s, const T&... t)
{
CSizeComputer sc(s.GetType(), s.GetVersion());
SerializeMany(sc, t...);
return sc.size();
}
#endif // BITCOIN_SERIALIZE_H