131d4450b9
-BEGIN VERIFY SCRIPT- ren() { git grep -l "\<$1\>" 'src/*.cpp' 'src/*.h' test | xargs sed -i "s:\<$1\>:$2:g"; } ren GenerateNewHDMasterKey GenerateNewSeed ren DeriveNewMasterHDKey DeriveNewSeed ren SetHDMasterKey SetHDSeed ren hdMasterKeyID hd_seed_id ren masterKeyID seed_id ren SetMaster SetSeed ren hdmasterkeyid hdseedid ren hdmaster hdseed -END VERIFY SCRIPT-
192 lines
6.3 KiB
C++
192 lines
6.3 KiB
C++
// Copyright (c) 2009-2010 Satoshi Nakamoto
|
|
// Copyright (c) 2009-2017 The Bitcoin Core developers
|
|
// Copyright (c) 2017 The Zcash developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#ifndef BITCOIN_KEY_H
|
|
#define BITCOIN_KEY_H
|
|
|
|
#include <pubkey.h>
|
|
#include <serialize.h>
|
|
#include <support/allocators/secure.h>
|
|
#include <uint256.h>
|
|
|
|
#include <stdexcept>
|
|
#include <vector>
|
|
|
|
|
|
/**
|
|
* secure_allocator is defined in allocators.h
|
|
* CPrivKey is a serialized private key, with all parameters included
|
|
* (PRIVATE_KEY_SIZE bytes)
|
|
*/
|
|
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
|
|
|
|
/** An encapsulated private key. */
|
|
class CKey
|
|
{
|
|
public:
|
|
/**
|
|
* secp256k1:
|
|
*/
|
|
static const unsigned int PRIVATE_KEY_SIZE = 279;
|
|
static const unsigned int COMPRESSED_PRIVATE_KEY_SIZE = 214;
|
|
/**
|
|
* see www.keylength.com
|
|
* script supports up to 75 for single byte push
|
|
*/
|
|
static_assert(
|
|
PRIVATE_KEY_SIZE >= COMPRESSED_PRIVATE_KEY_SIZE,
|
|
"COMPRESSED_PRIVATE_KEY_SIZE is larger than PRIVATE_KEY_SIZE");
|
|
|
|
private:
|
|
//! Whether this private key is valid. We check for correctness when modifying the key
|
|
//! data, so fValid should always correspond to the actual state.
|
|
bool fValid;
|
|
|
|
//! Whether the public key corresponding to this private key is (to be) compressed.
|
|
bool fCompressed;
|
|
|
|
//! The actual byte data
|
|
std::vector<unsigned char, secure_allocator<unsigned char> > keydata;
|
|
|
|
//! Check whether the 32-byte array pointed to by vch is valid keydata.
|
|
bool static Check(const unsigned char* vch);
|
|
|
|
public:
|
|
//! Construct an invalid private key.
|
|
CKey() : fValid(false), fCompressed(false)
|
|
{
|
|
// Important: vch must be 32 bytes in length to not break serialization
|
|
keydata.resize(32);
|
|
}
|
|
|
|
friend bool operator==(const CKey& a, const CKey& b)
|
|
{
|
|
return a.fCompressed == b.fCompressed &&
|
|
a.size() == b.size() &&
|
|
memcmp(a.keydata.data(), b.keydata.data(), a.size()) == 0;
|
|
}
|
|
|
|
//! Initialize using begin and end iterators to byte data.
|
|
template <typename T>
|
|
void Set(const T pbegin, const T pend, bool fCompressedIn)
|
|
{
|
|
if (size_t(pend - pbegin) != keydata.size()) {
|
|
fValid = false;
|
|
} else if (Check(&pbegin[0])) {
|
|
memcpy(keydata.data(), (unsigned char*)&pbegin[0], keydata.size());
|
|
fValid = true;
|
|
fCompressed = fCompressedIn;
|
|
} else {
|
|
fValid = false;
|
|
}
|
|
}
|
|
|
|
//! Simple read-only vector-like interface.
|
|
unsigned int size() const { return (fValid ? keydata.size() : 0); }
|
|
const unsigned char* begin() const { return keydata.data(); }
|
|
const unsigned char* end() const { return keydata.data() + size(); }
|
|
|
|
//! Check whether this private key is valid.
|
|
bool IsValid() const { return fValid; }
|
|
|
|
//! Check whether the public key corresponding to this private key is (to be) compressed.
|
|
bool IsCompressed() const { return fCompressed; }
|
|
|
|
//! Generate a new private key using a cryptographic PRNG.
|
|
void MakeNewKey(bool fCompressed);
|
|
|
|
/**
|
|
* Convert the private key to a CPrivKey (serialized OpenSSL private key data).
|
|
* This is expensive.
|
|
*/
|
|
CPrivKey GetPrivKey() const;
|
|
|
|
/**
|
|
* Compute the public key from a private key.
|
|
* This is expensive.
|
|
*/
|
|
CPubKey GetPubKey() const;
|
|
|
|
/**
|
|
* Create a DER-serialized signature.
|
|
* The test_case parameter tweaks the deterministic nonce.
|
|
*/
|
|
bool Sign(const uint256& hash, std::vector<unsigned char>& vchSig, uint32_t test_case = 0) const;
|
|
|
|
/**
|
|
* Create a compact signature (65 bytes), which allows reconstructing the used public key.
|
|
* The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
|
|
* The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
|
|
* 0x1D = second key with even y, 0x1E = second key with odd y,
|
|
* add 0x04 for compressed keys.
|
|
*/
|
|
bool SignCompact(const uint256& hash, std::vector<unsigned char>& vchSig) const;
|
|
|
|
//! Derive BIP32 child key.
|
|
bool Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const;
|
|
|
|
/**
|
|
* Verify thoroughly whether a private key and a public key match.
|
|
* This is done using a different mechanism than just regenerating it.
|
|
*/
|
|
bool VerifyPubKey(const CPubKey& vchPubKey) const;
|
|
|
|
//! Load private key and check that public key matches.
|
|
bool Load(const CPrivKey& privkey, const CPubKey& vchPubKey, bool fSkipCheck);
|
|
};
|
|
|
|
struct CExtKey {
|
|
unsigned char nDepth;
|
|
unsigned char vchFingerprint[4];
|
|
unsigned int nChild;
|
|
ChainCode chaincode;
|
|
CKey key;
|
|
|
|
friend bool operator==(const CExtKey& a, const CExtKey& b)
|
|
{
|
|
return a.nDepth == b.nDepth &&
|
|
memcmp(&a.vchFingerprint[0], &b.vchFingerprint[0], sizeof(vchFingerprint)) == 0 &&
|
|
a.nChild == b.nChild &&
|
|
a.chaincode == b.chaincode &&
|
|
a.key == b.key;
|
|
}
|
|
|
|
void Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const;
|
|
void Decode(const unsigned char code[BIP32_EXTKEY_SIZE]);
|
|
bool Derive(CExtKey& out, unsigned int nChild) const;
|
|
CExtPubKey Neuter() const;
|
|
void SetSeed(const unsigned char* seed, unsigned int nSeedLen);
|
|
template <typename Stream>
|
|
void Serialize(Stream& s) const
|
|
{
|
|
unsigned int len = BIP32_EXTKEY_SIZE;
|
|
::WriteCompactSize(s, len);
|
|
unsigned char code[BIP32_EXTKEY_SIZE];
|
|
Encode(code);
|
|
s.write((const char *)&code[0], len);
|
|
}
|
|
template <typename Stream>
|
|
void Unserialize(Stream& s)
|
|
{
|
|
unsigned int len = ::ReadCompactSize(s);
|
|
unsigned char code[BIP32_EXTKEY_SIZE];
|
|
if (len != BIP32_EXTKEY_SIZE)
|
|
throw std::runtime_error("Invalid extended key size\n");
|
|
s.read((char *)&code[0], len);
|
|
Decode(code);
|
|
}
|
|
};
|
|
|
|
/** Initialize the elliptic curve support. May not be called twice without calling ECC_Stop first. */
|
|
void ECC_Start(void);
|
|
|
|
/** Deinitialize the elliptic curve support. No-op if ECC_Start wasn't called first. */
|
|
void ECC_Stop(void);
|
|
|
|
/** Check that required EC support is available at runtime. */
|
|
bool ECC_InitSanityCheck(void);
|
|
|
|
#endif // BITCOIN_KEY_H
|