7fa238c701
Replace use of `BEGIN` and `END` macros on uint256 with `begin()` and `end()` methods in the Merkle tree code.
252 lines
10 KiB
C++
252 lines
10 KiB
C++
// Copyright (c) 2015-2018 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <consensus/merkle.h>
|
|
#include <test/test_bitcoin.h>
|
|
|
|
#include <boost/test/unit_test.hpp>
|
|
|
|
BOOST_FIXTURE_TEST_SUITE(merkle_tests, TestingSetup)
|
|
|
|
static uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& vMerkleBranch, uint32_t nIndex) {
|
|
uint256 hash = leaf;
|
|
for (std::vector<uint256>::const_iterator it = vMerkleBranch.begin(); it != vMerkleBranch.end(); ++it) {
|
|
if (nIndex & 1) {
|
|
hash = Hash(it->begin(), it->end(), hash.begin(), hash.end());
|
|
} else {
|
|
hash = Hash(hash.begin(), hash.end(), it->begin(), it->end());
|
|
}
|
|
nIndex >>= 1;
|
|
}
|
|
return hash;
|
|
}
|
|
|
|
/* This implements a constant-space merkle root/path calculator, limited to 2^32 leaves. */
|
|
static void MerkleComputation(const std::vector<uint256>& leaves, uint256* proot, bool* pmutated, uint32_t branchpos, std::vector<uint256>* pbranch) {
|
|
if (pbranch) pbranch->clear();
|
|
if (leaves.size() == 0) {
|
|
if (pmutated) *pmutated = false;
|
|
if (proot) *proot = uint256();
|
|
return;
|
|
}
|
|
bool mutated = false;
|
|
// count is the number of leaves processed so far.
|
|
uint32_t count = 0;
|
|
// inner is an array of eagerly computed subtree hashes, indexed by tree
|
|
// level (0 being the leaves).
|
|
// For example, when count is 25 (11001 in binary), inner[4] is the hash of
|
|
// the first 16 leaves, inner[3] of the next 8 leaves, and inner[0] equal to
|
|
// the last leaf. The other inner entries are undefined.
|
|
uint256 inner[32];
|
|
// Which position in inner is a hash that depends on the matching leaf.
|
|
int matchlevel = -1;
|
|
// First process all leaves into 'inner' values.
|
|
while (count < leaves.size()) {
|
|
uint256 h = leaves[count];
|
|
bool matchh = count == branchpos;
|
|
count++;
|
|
int level;
|
|
// For each of the lower bits in count that are 0, do 1 step. Each
|
|
// corresponds to an inner value that existed before processing the
|
|
// current leaf, and each needs a hash to combine it.
|
|
for (level = 0; !(count & (((uint32_t)1) << level)); level++) {
|
|
if (pbranch) {
|
|
if (matchh) {
|
|
pbranch->push_back(inner[level]);
|
|
} else if (matchlevel == level) {
|
|
pbranch->push_back(h);
|
|
matchh = true;
|
|
}
|
|
}
|
|
mutated |= (inner[level] == h);
|
|
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
|
}
|
|
// Store the resulting hash at inner position level.
|
|
inner[level] = h;
|
|
if (matchh) {
|
|
matchlevel = level;
|
|
}
|
|
}
|
|
// Do a final 'sweep' over the rightmost branch of the tree to process
|
|
// odd levels, and reduce everything to a single top value.
|
|
// Level is the level (counted from the bottom) up to which we've sweeped.
|
|
int level = 0;
|
|
// As long as bit number level in count is zero, skip it. It means there
|
|
// is nothing left at this level.
|
|
while (!(count & (((uint32_t)1) << level))) {
|
|
level++;
|
|
}
|
|
uint256 h = inner[level];
|
|
bool matchh = matchlevel == level;
|
|
while (count != (((uint32_t)1) << level)) {
|
|
// If we reach this point, h is an inner value that is not the top.
|
|
// We combine it with itself (Bitcoin's special rule for odd levels in
|
|
// the tree) to produce a higher level one.
|
|
if (pbranch && matchh) {
|
|
pbranch->push_back(h);
|
|
}
|
|
CHash256().Write(h.begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
|
// Increment count to the value it would have if two entries at this
|
|
// level had existed.
|
|
count += (((uint32_t)1) << level);
|
|
level++;
|
|
// And propagate the result upwards accordingly.
|
|
while (!(count & (((uint32_t)1) << level))) {
|
|
if (pbranch) {
|
|
if (matchh) {
|
|
pbranch->push_back(inner[level]);
|
|
} else if (matchlevel == level) {
|
|
pbranch->push_back(h);
|
|
matchh = true;
|
|
}
|
|
}
|
|
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
|
|
level++;
|
|
}
|
|
}
|
|
// Return result.
|
|
if (pmutated) *pmutated = mutated;
|
|
if (proot) *proot = h;
|
|
}
|
|
|
|
static std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position) {
|
|
std::vector<uint256> ret;
|
|
MerkleComputation(leaves, nullptr, nullptr, position, &ret);
|
|
return ret;
|
|
}
|
|
|
|
static std::vector<uint256> BlockMerkleBranch(const CBlock& block, uint32_t position)
|
|
{
|
|
std::vector<uint256> leaves;
|
|
leaves.resize(block.vtx.size());
|
|
for (size_t s = 0; s < block.vtx.size(); s++) {
|
|
leaves[s] = block.vtx[s]->GetHash();
|
|
}
|
|
return ComputeMerkleBranch(leaves, position);
|
|
}
|
|
|
|
// Older version of the merkle root computation code, for comparison.
|
|
static uint256 BlockBuildMerkleTree(const CBlock& block, bool* fMutated, std::vector<uint256>& vMerkleTree)
|
|
{
|
|
vMerkleTree.clear();
|
|
vMerkleTree.reserve(block.vtx.size() * 2 + 16); // Safe upper bound for the number of total nodes.
|
|
for (std::vector<CTransactionRef>::const_iterator it(block.vtx.begin()); it != block.vtx.end(); ++it)
|
|
vMerkleTree.push_back((*it)->GetHash());
|
|
int j = 0;
|
|
bool mutated = false;
|
|
for (int nSize = block.vtx.size(); nSize > 1; nSize = (nSize + 1) / 2)
|
|
{
|
|
for (int i = 0; i < nSize; i += 2)
|
|
{
|
|
int i2 = std::min(i+1, nSize-1);
|
|
if (i2 == i + 1 && i2 + 1 == nSize && vMerkleTree[j+i] == vMerkleTree[j+i2]) {
|
|
// Two identical hashes at the end of the list at a particular level.
|
|
mutated = true;
|
|
}
|
|
vMerkleTree.push_back(Hash(vMerkleTree[j+i].begin(), vMerkleTree[j+i].end(),
|
|
vMerkleTree[j+i2].begin(), vMerkleTree[j+i2].end()));
|
|
}
|
|
j += nSize;
|
|
}
|
|
if (fMutated) {
|
|
*fMutated = mutated;
|
|
}
|
|
return (vMerkleTree.empty() ? uint256() : vMerkleTree.back());
|
|
}
|
|
|
|
// Older version of the merkle branch computation code, for comparison.
|
|
static std::vector<uint256> BlockGetMerkleBranch(const CBlock& block, const std::vector<uint256>& vMerkleTree, int nIndex)
|
|
{
|
|
std::vector<uint256> vMerkleBranch;
|
|
int j = 0;
|
|
for (int nSize = block.vtx.size(); nSize > 1; nSize = (nSize + 1) / 2)
|
|
{
|
|
int i = std::min(nIndex^1, nSize-1);
|
|
vMerkleBranch.push_back(vMerkleTree[j+i]);
|
|
nIndex >>= 1;
|
|
j += nSize;
|
|
}
|
|
return vMerkleBranch;
|
|
}
|
|
|
|
static inline int ctz(uint32_t i) {
|
|
if (i == 0) return 0;
|
|
int j = 0;
|
|
while (!(i & 1)) {
|
|
j++;
|
|
i >>= 1;
|
|
}
|
|
return j;
|
|
}
|
|
|
|
BOOST_AUTO_TEST_CASE(merkle_test)
|
|
{
|
|
for (int i = 0; i < 32; i++) {
|
|
// Try 32 block sizes: all sizes from 0 to 16 inclusive, and then 15 random sizes.
|
|
int ntx = (i <= 16) ? i : 17 + (InsecureRandRange(4000));
|
|
// Try up to 3 mutations.
|
|
for (int mutate = 0; mutate <= 3; mutate++) {
|
|
int duplicate1 = mutate >= 1 ? 1 << ctz(ntx) : 0; // The last how many transactions to duplicate first.
|
|
if (duplicate1 >= ntx) break; // Duplication of the entire tree results in a different root (it adds a level).
|
|
int ntx1 = ntx + duplicate1; // The resulting number of transactions after the first duplication.
|
|
int duplicate2 = mutate >= 2 ? 1 << ctz(ntx1) : 0; // Likewise for the second mutation.
|
|
if (duplicate2 >= ntx1) break;
|
|
int ntx2 = ntx1 + duplicate2;
|
|
int duplicate3 = mutate >= 3 ? 1 << ctz(ntx2) : 0; // And for the third mutation.
|
|
if (duplicate3 >= ntx2) break;
|
|
int ntx3 = ntx2 + duplicate3;
|
|
// Build a block with ntx different transactions.
|
|
CBlock block;
|
|
block.vtx.resize(ntx);
|
|
for (int j = 0; j < ntx; j++) {
|
|
CMutableTransaction mtx;
|
|
mtx.nLockTime = j;
|
|
block.vtx[j] = MakeTransactionRef(std::move(mtx));
|
|
}
|
|
// Compute the root of the block before mutating it.
|
|
bool unmutatedMutated = false;
|
|
uint256 unmutatedRoot = BlockMerkleRoot(block, &unmutatedMutated);
|
|
BOOST_CHECK(unmutatedMutated == false);
|
|
// Optionally mutate by duplicating the last transactions, resulting in the same merkle root.
|
|
block.vtx.resize(ntx3);
|
|
for (int j = 0; j < duplicate1; j++) {
|
|
block.vtx[ntx + j] = block.vtx[ntx + j - duplicate1];
|
|
}
|
|
for (int j = 0; j < duplicate2; j++) {
|
|
block.vtx[ntx1 + j] = block.vtx[ntx1 + j - duplicate2];
|
|
}
|
|
for (int j = 0; j < duplicate3; j++) {
|
|
block.vtx[ntx2 + j] = block.vtx[ntx2 + j - duplicate3];
|
|
}
|
|
// Compute the merkle root and merkle tree using the old mechanism.
|
|
bool oldMutated = false;
|
|
std::vector<uint256> merkleTree;
|
|
uint256 oldRoot = BlockBuildMerkleTree(block, &oldMutated, merkleTree);
|
|
// Compute the merkle root using the new mechanism.
|
|
bool newMutated = false;
|
|
uint256 newRoot = BlockMerkleRoot(block, &newMutated);
|
|
BOOST_CHECK(oldRoot == newRoot);
|
|
BOOST_CHECK(newRoot == unmutatedRoot);
|
|
BOOST_CHECK((newRoot == uint256()) == (ntx == 0));
|
|
BOOST_CHECK(oldMutated == newMutated);
|
|
BOOST_CHECK(newMutated == !!mutate);
|
|
// If no mutation was done (once for every ntx value), try up to 16 branches.
|
|
if (mutate == 0) {
|
|
for (int loop = 0; loop < std::min(ntx, 16); loop++) {
|
|
// If ntx <= 16, try all branches. Otherwise, try 16 random ones.
|
|
int mtx = loop;
|
|
if (ntx > 16) {
|
|
mtx = InsecureRandRange(ntx);
|
|
}
|
|
std::vector<uint256> newBranch = BlockMerkleBranch(block, mtx);
|
|
std::vector<uint256> oldBranch = BlockGetMerkleBranch(block, merkleTree, mtx);
|
|
BOOST_CHECK(oldBranch == newBranch);
|
|
BOOST_CHECK(ComputeMerkleRootFromBranch(block.vtx[mtx]->GetHash(), newBranch, mtx) == oldRoot);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
BOOST_AUTO_TEST_SUITE_END()
|