lbrycrd/src/test/scheduler_tests.cpp
MarcoFalke faf400077d
scripted-diff: Bump copyright headers in test, bench
-BEGIN VERIFY SCRIPT-
./contrib/devtools/copyright_header.py update ./src/bench/
./contrib/devtools/copyright_header.py update ./src/test/
-END VERIFY SCRIPT-
2019-04-11 13:34:43 -04:00

158 lines
6.1 KiB
C++

// Copyright (c) 2012-2019 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <random.h>
#include <scheduler.h>
#include <test/setup_common.h>
#include <boost/thread.hpp>
#include <boost/test/unit_test.hpp>
BOOST_AUTO_TEST_SUITE(scheduler_tests)
static void microTask(CScheduler& s, boost::mutex& mutex, int& counter, int delta, boost::chrono::system_clock::time_point rescheduleTime)
{
{
boost::unique_lock<boost::mutex> lock(mutex);
counter += delta;
}
boost::chrono::system_clock::time_point noTime = boost::chrono::system_clock::time_point::min();
if (rescheduleTime != noTime) {
CScheduler::Function f = std::bind(&microTask, std::ref(s), std::ref(mutex), std::ref(counter), -delta + 1, noTime);
s.schedule(f, rescheduleTime);
}
}
static void MicroSleep(uint64_t n)
{
#if defined(HAVE_WORKING_BOOST_SLEEP_FOR)
boost::this_thread::sleep_for(boost::chrono::microseconds(n));
#elif defined(HAVE_WORKING_BOOST_SLEEP)
boost::this_thread::sleep(boost::posix_time::microseconds(n));
#else
//should never get here
#error missing boost sleep implementation
#endif
}
BOOST_AUTO_TEST_CASE(manythreads)
{
// Stress test: hundreds of microsecond-scheduled tasks,
// serviced by 10 threads.
//
// So... ten shared counters, which if all the tasks execute
// properly will sum to the number of tasks done.
// Each task adds or subtracts a random amount from one of the
// counters, and then schedules another task 0-1000
// microseconds in the future to subtract or add from
// the counter -random_amount+1, so in the end the shared
// counters should sum to the number of initial tasks performed.
CScheduler microTasks;
boost::mutex counterMutex[10];
int counter[10] = { 0 };
FastRandomContext rng{/* fDeterministic */ true};
auto zeroToNine = [](FastRandomContext& rc) -> int { return rc.randrange(10); }; // [0, 9]
auto randomMsec = [](FastRandomContext& rc) -> int { return -11 + (int)rc.randrange(1012); }; // [-11, 1000]
auto randomDelta = [](FastRandomContext& rc) -> int { return -1000 + (int)rc.randrange(2001); }; // [-1000, 1000]
boost::chrono::system_clock::time_point start = boost::chrono::system_clock::now();
boost::chrono::system_clock::time_point now = start;
boost::chrono::system_clock::time_point first, last;
size_t nTasks = microTasks.getQueueInfo(first, last);
BOOST_CHECK(nTasks == 0);
for (int i = 0; i < 100; ++i) {
boost::chrono::system_clock::time_point t = now + boost::chrono::microseconds(randomMsec(rng));
boost::chrono::system_clock::time_point tReschedule = now + boost::chrono::microseconds(500 + randomMsec(rng));
int whichCounter = zeroToNine(rng);
CScheduler::Function f = std::bind(&microTask, std::ref(microTasks),
std::ref(counterMutex[whichCounter]), std::ref(counter[whichCounter]),
randomDelta(rng), tReschedule);
microTasks.schedule(f, t);
}
nTasks = microTasks.getQueueInfo(first, last);
BOOST_CHECK(nTasks == 100);
BOOST_CHECK(first < last);
BOOST_CHECK(last > now);
// As soon as these are created they will start running and servicing the queue
boost::thread_group microThreads;
for (int i = 0; i < 5; i++)
microThreads.create_thread(std::bind(&CScheduler::serviceQueue, &microTasks));
MicroSleep(600);
now = boost::chrono::system_clock::now();
// More threads and more tasks:
for (int i = 0; i < 5; i++)
microThreads.create_thread(std::bind(&CScheduler::serviceQueue, &microTasks));
for (int i = 0; i < 100; i++) {
boost::chrono::system_clock::time_point t = now + boost::chrono::microseconds(randomMsec(rng));
boost::chrono::system_clock::time_point tReschedule = now + boost::chrono::microseconds(500 + randomMsec(rng));
int whichCounter = zeroToNine(rng);
CScheduler::Function f = std::bind(&microTask, std::ref(microTasks),
std::ref(counterMutex[whichCounter]), std::ref(counter[whichCounter]),
randomDelta(rng), tReschedule);
microTasks.schedule(f, t);
}
// Drain the task queue then exit threads
microTasks.stop(true);
microThreads.join_all(); // ... wait until all the threads are done
int counterSum = 0;
for (int i = 0; i < 10; i++) {
BOOST_CHECK(counter[i] != 0);
counterSum += counter[i];
}
BOOST_CHECK_EQUAL(counterSum, 200);
}
BOOST_AUTO_TEST_CASE(singlethreadedscheduler_ordered)
{
CScheduler scheduler;
// each queue should be well ordered with respect to itself but not other queues
SingleThreadedSchedulerClient queue1(&scheduler);
SingleThreadedSchedulerClient queue2(&scheduler);
// create more threads than queues
// if the queues only permit execution of one task at once then
// the extra threads should effectively be doing nothing
// if they don't we'll get out of order behaviour
boost::thread_group threads;
for (int i = 0; i < 5; ++i) {
threads.create_thread(std::bind(&CScheduler::serviceQueue, &scheduler));
}
// these are not atomic, if SinglethreadedSchedulerClient prevents
// parallel execution at the queue level no synchronization should be required here
int counter1 = 0;
int counter2 = 0;
// just simply count up on each queue - if execution is properly ordered then
// the callbacks should run in exactly the order in which they were enqueued
for (int i = 0; i < 100; ++i) {
queue1.AddToProcessQueue([i, &counter1]() {
bool expectation = i == counter1++;
assert(expectation);
});
queue2.AddToProcessQueue([i, &counter2]() {
bool expectation = i == counter2++;
assert(expectation);
});
}
// finish up
scheduler.stop(true);
threads.join_all();
BOOST_CHECK_EQUAL(counter1, 100);
BOOST_CHECK_EQUAL(counter2, 100);
}
BOOST_AUTO_TEST_SUITE_END()