198 lines
8.1 KiB
C++
198 lines
8.1 KiB
C++
// Copyright (c) 2017 Pieter Wuille
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <bech32.h>
|
|
|
|
#include <assert.h>
|
|
|
|
namespace
|
|
{
|
|
|
|
typedef std::vector<uint8_t> data;
|
|
|
|
/** The Bech32 character set for encoding. */
|
|
const char* CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l";
|
|
|
|
/** The Bech32 character set for decoding. */
|
|
const int8_t CHARSET_REV[128] = {
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
|
|
15, -1, 10, 17, 21, 20, 26, 30, 7, 5, -1, -1, -1, -1, -1, -1,
|
|
-1, 29, -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1,
|
|
1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1,
|
|
-1, 29, -1, 24, 13, 25, 9, 8, 23, -1, 18, 22, 31, 27, 19, -1,
|
|
1, 0, 3, 16, 11, 28, 12, 14, 6, 4, 2, -1, -1, -1, -1, -1
|
|
};
|
|
|
|
/** Concatenate two byte arrays. */
|
|
data Cat(data x, const data& y)
|
|
{
|
|
x.insert(x.end(), y.begin(), y.end());
|
|
return x;
|
|
}
|
|
|
|
/** This function will compute what 6 5-bit values to XOR into the last 6 input values, in order to
|
|
* make the checksum 0. These 6 values are packed together in a single 30-bit integer. The higher
|
|
* bits correspond to earlier values. */
|
|
uint32_t PolyMod(const data& v)
|
|
{
|
|
// The input is interpreted as a list of coefficients of a polynomial over F = GF(32), with an
|
|
// implicit 1 in front. If the input is [v0,v1,v2,v3,v4], that polynomial is v(x) =
|
|
// 1*x^5 + v0*x^4 + v1*x^3 + v2*x^2 + v3*x + v4. The implicit 1 guarantees that
|
|
// [v0,v1,v2,...] has a distinct checksum from [0,v0,v1,v2,...].
|
|
|
|
// The output is a 30-bit integer whose 5-bit groups are the coefficients of the remainder of
|
|
// v(x) mod g(x), where g(x) is the Bech32 generator,
|
|
// x^6 + {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}. g(x) is chosen in such a way
|
|
// that the resulting code is a BCH code, guaranteeing detection of up to 3 errors within a
|
|
// window of 1023 characters. Among the various possible BCH codes, one was selected to in
|
|
// fact guarantee detection of up to 4 errors within a window of 89 characters.
|
|
|
|
// Note that the coefficients are elements of GF(32), here represented as decimal numbers
|
|
// between {}. In this finite field, addition is just XOR of the corresponding numbers. For
|
|
// example, {27} + {13} = {27 ^ 13} = {22}. Multiplication is more complicated, and requires
|
|
// treating the bits of values themselves as coefficients of a polynomial over a smaller field,
|
|
// GF(2), and multiplying those polynomials mod a^5 + a^3 + 1. For example, {5} * {26} =
|
|
// (a^2 + 1) * (a^4 + a^3 + a) = (a^4 + a^3 + a) * a^2 + (a^4 + a^3 + a) = a^6 + a^5 + a^4 + a
|
|
// = a^3 + 1 (mod a^5 + a^3 + 1) = {9}.
|
|
|
|
// During the course of the loop below, `c` contains the bitpacked coefficients of the
|
|
// polynomial constructed from just the values of v that were processed so far, mod g(x). In
|
|
// the above example, `c` initially corresponds to 1 mod g(x), and after processing 2 inputs of
|
|
// v, it corresponds to x^2 + v0*x + v1 mod g(x). As 1 mod g(x) = 1, that is the starting value
|
|
// for `c`.
|
|
uint32_t c = 1;
|
|
for (const auto v_i : v) {
|
|
// We want to update `c` to correspond to a polynomial with one extra term. If the initial
|
|
// value of `c` consists of the coefficients of c(x) = f(x) mod g(x), we modify it to
|
|
// correspond to c'(x) = (f(x) * x + v_i) mod g(x), where v_i is the next input to
|
|
// process. Simplifying:
|
|
// c'(x) = (f(x) * x + v_i) mod g(x)
|
|
// ((f(x) mod g(x)) * x + v_i) mod g(x)
|
|
// (c(x) * x + v_i) mod g(x)
|
|
// If c(x) = c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5, we want to compute
|
|
// c'(x) = (c0*x^5 + c1*x^4 + c2*x^3 + c3*x^2 + c4*x + c5) * x + v_i mod g(x)
|
|
// = c0*x^6 + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i mod g(x)
|
|
// = c0*(x^6 mod g(x)) + c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i
|
|
// If we call (x^6 mod g(x)) = k(x), this can be written as
|
|
// c'(x) = (c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i) + c0*k(x)
|
|
|
|
// First, determine the value of c0:
|
|
uint8_t c0 = c >> 25;
|
|
|
|
// Then compute c1*x^5 + c2*x^4 + c3*x^3 + c4*x^2 + c5*x + v_i:
|
|
c = ((c & 0x1ffffff) << 5) ^ v_i;
|
|
|
|
// Finally, for each set bit n in c0, conditionally add {2^n}k(x):
|
|
if (c0 & 1) c ^= 0x3b6a57b2; // k(x) = {29}x^5 + {22}x^4 + {20}x^3 + {21}x^2 + {29}x + {18}
|
|
if (c0 & 2) c ^= 0x26508e6d; // {2}k(x) = {19}x^5 + {5}x^4 + x^3 + {3}x^2 + {19}x + {13}
|
|
if (c0 & 4) c ^= 0x1ea119fa; // {4}k(x) = {15}x^5 + {10}x^4 + {2}x^3 + {6}x^2 + {15}x + {26}
|
|
if (c0 & 8) c ^= 0x3d4233dd; // {8}k(x) = {30}x^5 + {20}x^4 + {4}x^3 + {12}x^2 + {30}x + {29}
|
|
if (c0 & 16) c ^= 0x2a1462b3; // {16}k(x) = {21}x^5 + x^4 + {8}x^3 + {24}x^2 + {21}x + {19}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
/** Convert to lower case. */
|
|
inline unsigned char LowerCase(unsigned char c)
|
|
{
|
|
return (c >= 'A' && c <= 'Z') ? (c - 'A') + 'a' : c;
|
|
}
|
|
|
|
/** Expand a HRP for use in checksum computation. */
|
|
data ExpandHRP(const std::string& hrp)
|
|
{
|
|
data ret;
|
|
ret.reserve(hrp.size() + 90);
|
|
ret.resize(hrp.size() * 2 + 1);
|
|
for (size_t i = 0; i < hrp.size(); ++i) {
|
|
unsigned char c = hrp[i];
|
|
ret[i] = c >> 5;
|
|
ret[i + hrp.size() + 1] = c & 0x1f;
|
|
}
|
|
ret[hrp.size()] = 0;
|
|
return ret;
|
|
}
|
|
|
|
/** Verify a checksum. */
|
|
bool VerifyChecksum(const std::string& hrp, const data& values)
|
|
{
|
|
// PolyMod computes what value to xor into the final values to make the checksum 0. However,
|
|
// if we required that the checksum was 0, it would be the case that appending a 0 to a valid
|
|
// list of values would result in a new valid list. For that reason, Bech32 requires the
|
|
// resulting checksum to be 1 instead.
|
|
return PolyMod(Cat(ExpandHRP(hrp), values)) == 1;
|
|
}
|
|
|
|
/** Create a checksum. */
|
|
data CreateChecksum(const std::string& hrp, const data& values)
|
|
{
|
|
data enc = Cat(ExpandHRP(hrp), values);
|
|
enc.resize(enc.size() + 6); // Append 6 zeroes
|
|
uint32_t mod = PolyMod(enc) ^ 1; // Determine what to XOR into those 6 zeroes.
|
|
data ret(6);
|
|
for (size_t i = 0; i < 6; ++i) {
|
|
// Convert the 5-bit groups in mod to checksum values.
|
|
ret[i] = (mod >> (5 * (5 - i))) & 31;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace bech32
|
|
{
|
|
|
|
/** Encode a Bech32 string. */
|
|
std::string Encode(const std::string& hrp, const data& values) {
|
|
// First ensure that the HRP is all lowercase. BIP-173 requires an encoder
|
|
// to return a lowercase Bech32 string, but if given an uppercase HRP, the
|
|
// result will always be invalid.
|
|
for (const char& c : hrp) assert(c < 'A' || c > 'Z');
|
|
data checksum = CreateChecksum(hrp, values);
|
|
data combined = Cat(values, checksum);
|
|
std::string ret = hrp + '1';
|
|
ret.reserve(ret.size() + combined.size());
|
|
for (const auto c : combined) {
|
|
ret += CHARSET[c];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/** Decode a Bech32 string. */
|
|
std::pair<std::string, data> Decode(const std::string& str) {
|
|
bool lower = false, upper = false;
|
|
for (size_t i = 0; i < str.size(); ++i) {
|
|
unsigned char c = str[i];
|
|
if (c >= 'a' && c <= 'z') lower = true;
|
|
else if (c >= 'A' && c <= 'Z') upper = true;
|
|
else if (c < 33 || c > 126) return {};
|
|
}
|
|
if (lower && upper) return {};
|
|
size_t pos = str.rfind('1');
|
|
if (str.size() > 90 || pos == str.npos || pos == 0 || pos + 7 > str.size()) {
|
|
return {};
|
|
}
|
|
data values(str.size() - 1 - pos);
|
|
for (size_t i = 0; i < str.size() - 1 - pos; ++i) {
|
|
unsigned char c = str[i + pos + 1];
|
|
int8_t rev = CHARSET_REV[c];
|
|
|
|
if (rev == -1) {
|
|
return {};
|
|
}
|
|
values[i] = rev;
|
|
}
|
|
std::string hrp;
|
|
for (size_t i = 0; i < pos; ++i) {
|
|
hrp += LowerCase(str[i]);
|
|
}
|
|
if (!VerifyChecksum(hrp, values)) {
|
|
return {};
|
|
}
|
|
return {hrp, data(values.begin(), values.end() - 6)};
|
|
}
|
|
|
|
} // namespace bech32
|