lbrycrd/src/net.h
Jonas Schnelli 2d790e82c8
Merge #14929: net: Allow connections from misbehavior banned peers
0297be61a Allow connections from misbehavior banned peers. (Gregory Maxwell)

Pull request description:

  This allows incoming connections from peers which are only banned
   due to an automatic misbehavior ban if doing so won't fill inbound.

  These peers are preferred for eviction when inbound fills, but may
   still be kept if they fall into the protected classes.  This
   eviction preference lasts the entire life of the connection even
   if the ban expires.

  If they misbehave again they'll still get disconnected.

  The main purpose of banning on misbehavior is to prevent our
   connections from being wasted on unhelpful peers such as ones
   running incompatible consensus rules.  For inbound peers this
   can be better accomplished with eviction preferences.

  A secondary purpose was to reduce resource waste from repeated
   abuse but virtually any attacker can get a nearly unlimited
   supply of addresses, so disconnection is about the best we can
   do.

  This can reduce the potential from negative impact due to incorrect misbehaviour bans.

Tree-SHA512: 03bc8ec8bae365cc437daf70000c8f2edc512e37db821bc4e0fafa6cf56cc185e9ab40453aa02445f48d6a2e3e7268767ca2017655aca5383108416f1e2cf20f
2019-01-29 13:41:04 -10:00

878 lines
29 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2019 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_NET_H
#define BITCOIN_NET_H
#include <addrdb.h>
#include <addrman.h>
#include <amount.h>
#include <bloom.h>
#include <compat.h>
#include <crypto/siphash.h>
#include <hash.h>
#include <limitedmap.h>
#include <netaddress.h>
#include <policy/feerate.h>
#include <protocol.h>
#include <random.h>
#include <streams.h>
#include <sync.h>
#include <uint256.h>
#include <threadinterrupt.h>
#include <atomic>
#include <deque>
#include <stdint.h>
#include <thread>
#include <memory>
#include <condition_variable>
#ifndef WIN32
#include <arpa/inet.h>
#endif
class CScheduler;
class CNode;
class BanMan;
/** Time between pings automatically sent out for latency probing and keepalive (in seconds). */
static const int PING_INTERVAL = 2 * 60;
/** Time after which to disconnect, after waiting for a ping response (or inactivity). */
static const int TIMEOUT_INTERVAL = 20 * 60;
/** Run the feeler connection loop once every 2 minutes or 120 seconds. **/
static const int FEELER_INTERVAL = 120;
/** The maximum number of entries in an 'inv' protocol message */
static const unsigned int MAX_INV_SZ = 50000;
/** The maximum number of entries in a locator */
static const unsigned int MAX_LOCATOR_SZ = 101;
/** The maximum number of new addresses to accumulate before announcing. */
static const unsigned int MAX_ADDR_TO_SEND = 1000;
/** Maximum length of incoming protocol messages (no message over 4 MB is currently acceptable). */
static const unsigned int MAX_PROTOCOL_MESSAGE_LENGTH = 4 * 1000 * 1000;
/** Maximum length of strSubVer in `version` message */
static const unsigned int MAX_SUBVERSION_LENGTH = 256;
/** Maximum number of automatic outgoing nodes */
static const int MAX_OUTBOUND_CONNECTIONS = 8;
/** Maximum number of addnode outgoing nodes */
static const int MAX_ADDNODE_CONNECTIONS = 8;
/** -listen default */
static const bool DEFAULT_LISTEN = true;
/** -upnp default */
#ifdef USE_UPNP
static const bool DEFAULT_UPNP = USE_UPNP;
#else
static const bool DEFAULT_UPNP = false;
#endif
/** The maximum number of entries in mapAskFor */
static const size_t MAPASKFOR_MAX_SZ = MAX_INV_SZ;
/** The maximum number of entries in setAskFor (larger due to getdata latency)*/
static const size_t SETASKFOR_MAX_SZ = 2 * MAX_INV_SZ;
/** The maximum number of peer connections to maintain. */
static const unsigned int DEFAULT_MAX_PEER_CONNECTIONS = 125;
/** The default for -maxuploadtarget. 0 = Unlimited */
static const uint64_t DEFAULT_MAX_UPLOAD_TARGET = 0;
/** The default timeframe for -maxuploadtarget. 1 day. */
static const uint64_t MAX_UPLOAD_TIMEFRAME = 60 * 60 * 24;
/** Default for blocks only*/
static const bool DEFAULT_BLOCKSONLY = false;
/** -peertimeout default */
static const int64_t DEFAULT_PEER_CONNECT_TIMEOUT = 60;
static const bool DEFAULT_FORCEDNSSEED = false;
static const size_t DEFAULT_MAXRECEIVEBUFFER = 5 * 1000;
static const size_t DEFAULT_MAXSENDBUFFER = 1 * 1000;
typedef int64_t NodeId;
struct AddedNodeInfo
{
std::string strAddedNode;
CService resolvedAddress;
bool fConnected;
bool fInbound;
};
class CNodeStats;
class CClientUIInterface;
struct CSerializedNetMsg
{
CSerializedNetMsg() = default;
CSerializedNetMsg(CSerializedNetMsg&&) = default;
CSerializedNetMsg& operator=(CSerializedNetMsg&&) = default;
// No copying, only moves.
CSerializedNetMsg(const CSerializedNetMsg& msg) = delete;
CSerializedNetMsg& operator=(const CSerializedNetMsg&) = delete;
std::vector<unsigned char> data;
std::string command;
};
class NetEventsInterface;
class CConnman
{
public:
enum NumConnections {
CONNECTIONS_NONE = 0,
CONNECTIONS_IN = (1U << 0),
CONNECTIONS_OUT = (1U << 1),
CONNECTIONS_ALL = (CONNECTIONS_IN | CONNECTIONS_OUT),
};
struct Options
{
ServiceFlags nLocalServices = NODE_NONE;
int nMaxConnections = 0;
int nMaxOutbound = 0;
int nMaxAddnode = 0;
int nMaxFeeler = 0;
int nBestHeight = 0;
CClientUIInterface* uiInterface = nullptr;
NetEventsInterface* m_msgproc = nullptr;
BanMan* m_banman = nullptr;
unsigned int nSendBufferMaxSize = 0;
unsigned int nReceiveFloodSize = 0;
uint64_t nMaxOutboundTimeframe = 0;
uint64_t nMaxOutboundLimit = 0;
int64_t m_peer_connect_timeout = DEFAULT_PEER_CONNECT_TIMEOUT;
std::vector<std::string> vSeedNodes;
std::vector<CSubNet> vWhitelistedRange;
std::vector<CService> vBinds, vWhiteBinds;
bool m_use_addrman_outgoing = true;
std::vector<std::string> m_specified_outgoing;
std::vector<std::string> m_added_nodes;
};
void Init(const Options& connOptions) {
nLocalServices = connOptions.nLocalServices;
nMaxConnections = connOptions.nMaxConnections;
nMaxOutbound = std::min(connOptions.nMaxOutbound, connOptions.nMaxConnections);
m_use_addrman_outgoing = connOptions.m_use_addrman_outgoing;
nMaxAddnode = connOptions.nMaxAddnode;
nMaxFeeler = connOptions.nMaxFeeler;
nBestHeight = connOptions.nBestHeight;
clientInterface = connOptions.uiInterface;
m_banman = connOptions.m_banman;
m_msgproc = connOptions.m_msgproc;
nSendBufferMaxSize = connOptions.nSendBufferMaxSize;
nReceiveFloodSize = connOptions.nReceiveFloodSize;
m_peer_connect_timeout = connOptions.m_peer_connect_timeout;
{
LOCK(cs_totalBytesSent);
nMaxOutboundTimeframe = connOptions.nMaxOutboundTimeframe;
nMaxOutboundLimit = connOptions.nMaxOutboundLimit;
}
vWhitelistedRange = connOptions.vWhitelistedRange;
{
LOCK(cs_vAddedNodes);
vAddedNodes = connOptions.m_added_nodes;
}
}
CConnman(uint64_t seed0, uint64_t seed1);
~CConnman();
bool Start(CScheduler& scheduler, const Options& options);
void Stop();
void Interrupt();
bool GetNetworkActive() const { return fNetworkActive; };
bool GetUseAddrmanOutgoing() const { return m_use_addrman_outgoing; };
void SetNetworkActive(bool active);
void OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound = nullptr, const char *strDest = nullptr, bool fOneShot = false, bool fFeeler = false, bool manual_connection = false);
bool CheckIncomingNonce(uint64_t nonce);
bool ForNode(NodeId id, std::function<bool(CNode* pnode)> func);
void PushMessage(CNode* pnode, CSerializedNetMsg&& msg);
template<typename Callable>
void ForEachNode(Callable&& func)
{
LOCK(cs_vNodes);
for (auto&& node : vNodes) {
if (NodeFullyConnected(node))
func(node);
}
};
template<typename Callable>
void ForEachNode(Callable&& func) const
{
LOCK(cs_vNodes);
for (auto&& node : vNodes) {
if (NodeFullyConnected(node))
func(node);
}
};
template<typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable&& pre, CallableAfter&& post)
{
LOCK(cs_vNodes);
for (auto&& node : vNodes) {
if (NodeFullyConnected(node))
pre(node);
}
post();
};
template<typename Callable, typename CallableAfter>
void ForEachNodeThen(Callable&& pre, CallableAfter&& post) const
{
LOCK(cs_vNodes);
for (auto&& node : vNodes) {
if (NodeFullyConnected(node))
pre(node);
}
post();
};
// Addrman functions
size_t GetAddressCount() const;
void SetServices(const CService &addr, ServiceFlags nServices);
void MarkAddressGood(const CAddress& addr);
void AddNewAddresses(const std::vector<CAddress>& vAddr, const CAddress& addrFrom, int64_t nTimePenalty = 0);
std::vector<CAddress> GetAddresses();
// This allows temporarily exceeding nMaxOutbound, with the goal of finding
// a peer that is better than all our current peers.
void SetTryNewOutboundPeer(bool flag);
bool GetTryNewOutboundPeer();
// Return the number of outbound peers we have in excess of our target (eg,
// if we previously called SetTryNewOutboundPeer(true), and have since set
// to false, we may have extra peers that we wish to disconnect). This may
// return a value less than (num_outbound_connections - num_outbound_slots)
// in cases where some outbound connections are not yet fully connected, or
// not yet fully disconnected.
int GetExtraOutboundCount();
bool AddNode(const std::string& node);
bool RemoveAddedNode(const std::string& node);
std::vector<AddedNodeInfo> GetAddedNodeInfo();
size_t GetNodeCount(NumConnections num);
void GetNodeStats(std::vector<CNodeStats>& vstats);
bool DisconnectNode(const std::string& node);
bool DisconnectNode(const CSubNet& subnet);
bool DisconnectNode(const CNetAddr& addr);
bool DisconnectNode(NodeId id);
ServiceFlags GetLocalServices() const;
//!set the max outbound target in bytes
void SetMaxOutboundTarget(uint64_t limit);
uint64_t GetMaxOutboundTarget();
//!set the timeframe for the max outbound target
void SetMaxOutboundTimeframe(uint64_t timeframe);
uint64_t GetMaxOutboundTimeframe();
//! check if the outbound target is reached
//! if param historicalBlockServingLimit is set true, the function will
//! response true if the limit for serving historical blocks has been reached
bool OutboundTargetReached(bool historicalBlockServingLimit);
//! response the bytes left in the current max outbound cycle
//! in case of no limit, it will always response 0
uint64_t GetOutboundTargetBytesLeft();
//! response the time in second left in the current max outbound cycle
//! in case of no limit, it will always response 0
uint64_t GetMaxOutboundTimeLeftInCycle();
uint64_t GetTotalBytesRecv();
uint64_t GetTotalBytesSent();
void SetBestHeight(int height);
int GetBestHeight() const;
/** Get a unique deterministic randomizer. */
CSipHasher GetDeterministicRandomizer(uint64_t id) const;
unsigned int GetReceiveFloodSize() const;
void WakeMessageHandler();
/** Attempts to obfuscate tx time through exponentially distributed emitting.
Works assuming that a single interval is used.
Variable intervals will result in privacy decrease.
*/
int64_t PoissonNextSendInbound(int64_t now, int average_interval_seconds);
private:
struct ListenSocket {
SOCKET socket;
bool whitelisted;
ListenSocket(SOCKET socket_, bool whitelisted_) : socket(socket_), whitelisted(whitelisted_) {}
};
bool BindListenPort(const CService &bindAddr, std::string& strError, bool fWhitelisted = false);
bool Bind(const CService &addr, unsigned int flags);
bool InitBinds(const std::vector<CService>& binds, const std::vector<CService>& whiteBinds);
void ThreadOpenAddedConnections();
void AddOneShot(const std::string& strDest);
void ProcessOneShot();
void ThreadOpenConnections(std::vector<std::string> connect);
void ThreadMessageHandler();
void AcceptConnection(const ListenSocket& hListenSocket);
void DisconnectNodes();
void NotifyNumConnectionsChanged();
void InactivityCheck(CNode *pnode);
bool GenerateSelectSet(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set);
void SocketEvents(std::set<SOCKET> &recv_set, std::set<SOCKET> &send_set, std::set<SOCKET> &error_set);
void SocketHandler();
void ThreadSocketHandler();
void ThreadDNSAddressSeed();
uint64_t CalculateKeyedNetGroup(const CAddress& ad) const;
CNode* FindNode(const CNetAddr& ip);
CNode* FindNode(const CSubNet& subNet);
CNode* FindNode(const std::string& addrName);
CNode* FindNode(const CService& addr);
bool AttemptToEvictConnection();
CNode* ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure, bool manual_connection);
bool IsWhitelistedRange(const CNetAddr &addr);
void DeleteNode(CNode* pnode);
NodeId GetNewNodeId();
size_t SocketSendData(CNode *pnode) const;
void DumpAddresses();
// Network stats
void RecordBytesRecv(uint64_t bytes);
void RecordBytesSent(uint64_t bytes);
// Whether the node should be passed out in ForEach* callbacks
static bool NodeFullyConnected(const CNode* pnode);
// Network usage totals
CCriticalSection cs_totalBytesRecv;
CCriticalSection cs_totalBytesSent;
uint64_t nTotalBytesRecv GUARDED_BY(cs_totalBytesRecv);
uint64_t nTotalBytesSent GUARDED_BY(cs_totalBytesSent);
// outbound limit & stats
uint64_t nMaxOutboundTotalBytesSentInCycle GUARDED_BY(cs_totalBytesSent);
uint64_t nMaxOutboundCycleStartTime GUARDED_BY(cs_totalBytesSent);
uint64_t nMaxOutboundLimit GUARDED_BY(cs_totalBytesSent);
uint64_t nMaxOutboundTimeframe GUARDED_BY(cs_totalBytesSent);
// P2P timeout in seconds
int64_t m_peer_connect_timeout;
// Whitelisted ranges. Any node connecting from these is automatically
// whitelisted (as well as those connecting to whitelisted binds).
std::vector<CSubNet> vWhitelistedRange;
unsigned int nSendBufferMaxSize{0};
unsigned int nReceiveFloodSize{0};
std::vector<ListenSocket> vhListenSocket;
std::atomic<bool> fNetworkActive{true};
bool fAddressesInitialized{false};
CAddrMan addrman;
std::deque<std::string> vOneShots GUARDED_BY(cs_vOneShots);
CCriticalSection cs_vOneShots;
std::vector<std::string> vAddedNodes GUARDED_BY(cs_vAddedNodes);
CCriticalSection cs_vAddedNodes;
std::vector<CNode*> vNodes;
std::list<CNode*> vNodesDisconnected;
mutable CCriticalSection cs_vNodes;
std::atomic<NodeId> nLastNodeId{0};
unsigned int nPrevNodeCount{0};
/** Services this instance offers */
ServiceFlags nLocalServices;
std::unique_ptr<CSemaphore> semOutbound;
std::unique_ptr<CSemaphore> semAddnode;
int nMaxConnections;
int nMaxOutbound;
int nMaxAddnode;
int nMaxFeeler;
bool m_use_addrman_outgoing;
std::atomic<int> nBestHeight;
CClientUIInterface* clientInterface;
NetEventsInterface* m_msgproc;
BanMan* m_banman;
/** SipHasher seeds for deterministic randomness */
const uint64_t nSeed0, nSeed1;
/** flag for waking the message processor. */
bool fMsgProcWake;
std::condition_variable condMsgProc;
Mutex mutexMsgProc;
std::atomic<bool> flagInterruptMsgProc{false};
CThreadInterrupt interruptNet;
std::thread threadDNSAddressSeed;
std::thread threadSocketHandler;
std::thread threadOpenAddedConnections;
std::thread threadOpenConnections;
std::thread threadMessageHandler;
/** flag for deciding to connect to an extra outbound peer,
* in excess of nMaxOutbound
* This takes the place of a feeler connection */
std::atomic_bool m_try_another_outbound_peer;
std::atomic<int64_t> m_next_send_inv_to_incoming{0};
friend struct CConnmanTest;
};
extern std::unique_ptr<CConnman> g_connman;
extern std::unique_ptr<BanMan> g_banman;
void Discover();
void StartMapPort();
void InterruptMapPort();
void StopMapPort();
unsigned short GetListenPort();
bool BindListenPort(const CService &bindAddr, std::string& strError, bool fWhitelisted = false);
struct CombinerAll
{
typedef bool result_type;
template<typename I>
bool operator()(I first, I last) const
{
while (first != last) {
if (!(*first)) return false;
++first;
}
return true;
}
};
/**
* Interface for message handling
*/
class NetEventsInterface
{
public:
virtual bool ProcessMessages(CNode* pnode, std::atomic<bool>& interrupt) = 0;
virtual bool SendMessages(CNode* pnode) = 0;
virtual void InitializeNode(CNode* pnode) = 0;
virtual void FinalizeNode(NodeId id, bool& update_connection_time) = 0;
protected:
/**
* Protected destructor so that instances can only be deleted by derived classes.
* If that restriction is no longer desired, this should be made public and virtual.
*/
~NetEventsInterface() = default;
};
enum
{
LOCAL_NONE, // unknown
LOCAL_IF, // address a local interface listens on
LOCAL_BIND, // address explicit bound to
LOCAL_UPNP, // address reported by UPnP
LOCAL_MANUAL, // address explicitly specified (-externalip=)
LOCAL_MAX
};
bool IsPeerAddrLocalGood(CNode *pnode);
void AdvertiseLocal(CNode *pnode);
/**
* Mark a network as reachable or unreachable (no automatic connects to it)
* @note Networks are reachable by default
*/
void SetReachable(enum Network net, bool reachable);
/** @returns true if the network is reachable, false otherwise */
bool IsReachable(enum Network net);
/** @returns true if the address is in a reachable network, false otherwise */
bool IsReachable(const CNetAddr& addr);
bool AddLocal(const CService& addr, int nScore = LOCAL_NONE);
bool AddLocal(const CNetAddr& addr, int nScore = LOCAL_NONE);
void RemoveLocal(const CService& addr);
bool SeenLocal(const CService& addr);
bool IsLocal(const CService& addr);
bool GetLocal(CService &addr, const CNetAddr *paddrPeer = nullptr);
CAddress GetLocalAddress(const CNetAddr *paddrPeer, ServiceFlags nLocalServices);
extern bool fDiscover;
extern bool fListen;
extern bool fRelayTxes;
extern limitedmap<uint256, int64_t> mapAlreadyAskedFor;
/** Subversion as sent to the P2P network in `version` messages */
extern std::string strSubVersion;
struct LocalServiceInfo {
int nScore;
int nPort;
};
extern CCriticalSection cs_mapLocalHost;
extern std::map<CNetAddr, LocalServiceInfo> mapLocalHost GUARDED_BY(cs_mapLocalHost);
extern const std::string NET_MESSAGE_COMMAND_OTHER;
typedef std::map<std::string, uint64_t> mapMsgCmdSize; //command, total bytes
class CNodeStats
{
public:
NodeId nodeid;
ServiceFlags nServices;
bool fRelayTxes;
int64_t nLastSend;
int64_t nLastRecv;
int64_t nTimeConnected;
int64_t nTimeOffset;
std::string addrName;
int nVersion;
std::string cleanSubVer;
bool fInbound;
bool m_manual_connection;
int nStartingHeight;
uint64_t nSendBytes;
mapMsgCmdSize mapSendBytesPerMsgCmd;
uint64_t nRecvBytes;
mapMsgCmdSize mapRecvBytesPerMsgCmd;
bool fWhitelisted;
double dPingTime;
double dPingWait;
double dMinPing;
CAmount minFeeFilter;
// Our address, as reported by the peer
std::string addrLocal;
// Address of this peer
CAddress addr;
// Bind address of our side of the connection
CAddress addrBind;
};
class CNetMessage {
private:
mutable CHash256 hasher;
mutable uint256 data_hash;
public:
bool in_data; // parsing header (false) or data (true)
CDataStream hdrbuf; // partially received header
CMessageHeader hdr; // complete header
unsigned int nHdrPos;
CDataStream vRecv; // received message data
unsigned int nDataPos;
int64_t nTime; // time (in microseconds) of message receipt.
CNetMessage(const CMessageHeader::MessageStartChars& pchMessageStartIn, int nTypeIn, int nVersionIn) : hdrbuf(nTypeIn, nVersionIn), hdr(pchMessageStartIn), vRecv(nTypeIn, nVersionIn) {
hdrbuf.resize(24);
in_data = false;
nHdrPos = 0;
nDataPos = 0;
nTime = 0;
}
bool complete() const
{
if (!in_data)
return false;
return (hdr.nMessageSize == nDataPos);
}
const uint256& GetMessageHash() const;
void SetVersion(int nVersionIn)
{
hdrbuf.SetVersion(nVersionIn);
vRecv.SetVersion(nVersionIn);
}
int readHeader(const char *pch, unsigned int nBytes);
int readData(const char *pch, unsigned int nBytes);
};
/** Information about a peer */
class CNode
{
friend class CConnman;
public:
// socket
std::atomic<ServiceFlags> nServices{NODE_NONE};
SOCKET hSocket GUARDED_BY(cs_hSocket);
size_t nSendSize{0}; // total size of all vSendMsg entries
size_t nSendOffset{0}; // offset inside the first vSendMsg already sent
uint64_t nSendBytes GUARDED_BY(cs_vSend){0};
std::deque<std::vector<unsigned char>> vSendMsg GUARDED_BY(cs_vSend);
CCriticalSection cs_vSend;
CCriticalSection cs_hSocket;
CCriticalSection cs_vRecv;
CCriticalSection cs_vProcessMsg;
std::list<CNetMessage> vProcessMsg GUARDED_BY(cs_vProcessMsg);
size_t nProcessQueueSize{0};
CCriticalSection cs_sendProcessing;
std::deque<CInv> vRecvGetData;
uint64_t nRecvBytes GUARDED_BY(cs_vRecv){0};
std::atomic<int> nRecvVersion{INIT_PROTO_VERSION};
std::atomic<int64_t> nLastSend{0};
std::atomic<int64_t> nLastRecv{0};
const int64_t nTimeConnected;
std::atomic<int64_t> nTimeOffset{0};
// Address of this peer
const CAddress addr;
// Bind address of our side of the connection
const CAddress addrBind;
std::atomic<int> nVersion{0};
// strSubVer is whatever byte array we read from the wire. However, this field is intended
// to be printed out, displayed to humans in various forms and so on. So we sanitize it and
// store the sanitized version in cleanSubVer. The original should be used when dealing with
// the network or wire types and the cleaned string used when displayed or logged.
std::string strSubVer GUARDED_BY(cs_SubVer), cleanSubVer GUARDED_BY(cs_SubVer);
CCriticalSection cs_SubVer; // used for both cleanSubVer and strSubVer
bool m_prefer_evict{false}; // This peer is preferred for eviction.
bool fWhitelisted{false}; // This peer can bypass DoS banning.
bool fFeeler{false}; // If true this node is being used as a short lived feeler.
bool fOneShot{false};
bool m_manual_connection{false};
bool fClient{false}; // set by version message
bool m_limited_node{false}; //after BIP159, set by version message
const bool fInbound;
std::atomic_bool fSuccessfullyConnected{false};
// Setting fDisconnect to true will cause the node to be disconnected the
// next time DisconnectNodes() runs
std::atomic_bool fDisconnect{false};
// We use fRelayTxes for two purposes -
// a) it allows us to not relay tx invs before receiving the peer's version message
// b) the peer may tell us in its version message that we should not relay tx invs
// unless it loads a bloom filter.
bool fRelayTxes GUARDED_BY(cs_filter){false};
bool fSentAddr{false};
CSemaphoreGrant grantOutbound;
mutable CCriticalSection cs_filter;
std::unique_ptr<CBloomFilter> pfilter PT_GUARDED_BY(cs_filter);
std::atomic<int> nRefCount{0};
const uint64_t nKeyedNetGroup;
std::atomic_bool fPauseRecv{false};
std::atomic_bool fPauseSend{false};
protected:
mapMsgCmdSize mapSendBytesPerMsgCmd;
mapMsgCmdSize mapRecvBytesPerMsgCmd GUARDED_BY(cs_vRecv);
public:
uint256 hashContinue;
std::atomic<int> nStartingHeight{-1};
// flood relay
std::vector<CAddress> vAddrToSend;
CRollingBloomFilter addrKnown;
bool fGetAddr{false};
std::set<uint256> setKnown;
int64_t nNextAddrSend GUARDED_BY(cs_sendProcessing){0};
int64_t nNextLocalAddrSend GUARDED_BY(cs_sendProcessing){0};
// inventory based relay
CRollingBloomFilter filterInventoryKnown GUARDED_BY(cs_inventory);
// Set of transaction ids we still have to announce.
// They are sorted by the mempool before relay, so the order is not important.
std::set<uint256> setInventoryTxToSend;
// List of block ids we still have announce.
// There is no final sorting before sending, as they are always sent immediately
// and in the order requested.
std::vector<uint256> vInventoryBlockToSend GUARDED_BY(cs_inventory);
CCriticalSection cs_inventory;
std::set<uint256> setAskFor;
std::multimap<int64_t, CInv> mapAskFor;
int64_t nNextInvSend{0};
// Used for headers announcements - unfiltered blocks to relay
std::vector<uint256> vBlockHashesToAnnounce GUARDED_BY(cs_inventory);
// Used for BIP35 mempool sending
bool fSendMempool GUARDED_BY(cs_inventory){false};
// Last time a "MEMPOOL" request was serviced.
std::atomic<int64_t> timeLastMempoolReq{0};
// Block and TXN accept times
std::atomic<int64_t> nLastBlockTime{0};
std::atomic<int64_t> nLastTXTime{0};
// Ping time measurement:
// The pong reply we're expecting, or 0 if no pong expected.
std::atomic<uint64_t> nPingNonceSent{0};
// Time (in usec) the last ping was sent, or 0 if no ping was ever sent.
std::atomic<int64_t> nPingUsecStart{0};
// Last measured round-trip time.
std::atomic<int64_t> nPingUsecTime{0};
// Best measured round-trip time.
std::atomic<int64_t> nMinPingUsecTime{std::numeric_limits<int64_t>::max()};
// Whether a ping is requested.
std::atomic<bool> fPingQueued{false};
// Minimum fee rate with which to filter inv's to this node
CAmount minFeeFilter GUARDED_BY(cs_feeFilter){0};
CCriticalSection cs_feeFilter;
CAmount lastSentFeeFilter{0};
int64_t nextSendTimeFeeFilter{0};
CNode(NodeId id, ServiceFlags nLocalServicesIn, int nMyStartingHeightIn, SOCKET hSocketIn, const CAddress &addrIn, uint64_t nKeyedNetGroupIn, uint64_t nLocalHostNonceIn, const CAddress &addrBindIn, const std::string &addrNameIn = "", bool fInboundIn = false);
~CNode();
CNode(const CNode&) = delete;
CNode& operator=(const CNode&) = delete;
private:
const NodeId id;
const uint64_t nLocalHostNonce;
// Services offered to this peer
const ServiceFlags nLocalServices;
const int nMyStartingHeight;
int nSendVersion{0};
std::list<CNetMessage> vRecvMsg; // Used only by SocketHandler thread
mutable CCriticalSection cs_addrName;
std::string addrName GUARDED_BY(cs_addrName);
// Our address, as reported by the peer
CService addrLocal GUARDED_BY(cs_addrLocal);
mutable CCriticalSection cs_addrLocal;
public:
NodeId GetId() const {
return id;
}
uint64_t GetLocalNonce() const {
return nLocalHostNonce;
}
int GetMyStartingHeight() const {
return nMyStartingHeight;
}
int GetRefCount() const
{
assert(nRefCount >= 0);
return nRefCount;
}
bool ReceiveMsgBytes(const char *pch, unsigned int nBytes, bool& complete);
void SetRecvVersion(int nVersionIn)
{
nRecvVersion = nVersionIn;
}
int GetRecvVersion() const
{
return nRecvVersion;
}
void SetSendVersion(int nVersionIn);
int GetSendVersion() const;
CService GetAddrLocal() const;
//! May not be called more than once
void SetAddrLocal(const CService& addrLocalIn);
CNode* AddRef()
{
nRefCount++;
return this;
}
void Release()
{
nRefCount--;
}
void AddAddressKnown(const CAddress& _addr)
{
addrKnown.insert(_addr.GetKey());
}
void PushAddress(const CAddress& _addr, FastRandomContext &insecure_rand)
{
// Known checking here is only to save space from duplicates.
// SendMessages will filter it again for knowns that were added
// after addresses were pushed.
if (_addr.IsValid() && !addrKnown.contains(_addr.GetKey())) {
if (vAddrToSend.size() >= MAX_ADDR_TO_SEND) {
vAddrToSend[insecure_rand.randrange(vAddrToSend.size())] = _addr;
} else {
vAddrToSend.push_back(_addr);
}
}
}
void AddInventoryKnown(const CInv& inv)
{
{
LOCK(cs_inventory);
filterInventoryKnown.insert(inv.hash);
}
}
void PushInventory(const CInv& inv)
{
LOCK(cs_inventory);
if (inv.type == MSG_TX) {
if (!filterInventoryKnown.contains(inv.hash)) {
setInventoryTxToSend.insert(inv.hash);
}
} else if (inv.type == MSG_BLOCK) {
vInventoryBlockToSend.push_back(inv.hash);
}
}
void PushBlockHash(const uint256 &hash)
{
LOCK(cs_inventory);
vBlockHashesToAnnounce.push_back(hash);
}
void AskFor(const CInv& inv);
void CloseSocketDisconnect();
void copyStats(CNodeStats &stats);
ServiceFlags GetLocalServices() const
{
return nLocalServices;
}
std::string GetAddrName() const;
//! Sets the addrName only if it was not previously set
void MaybeSetAddrName(const std::string& addrNameIn);
};
/** Return a timestamp in the future (in microseconds) for exponentially distributed events. */
int64_t PoissonNextSend(int64_t now, int average_interval_seconds);
#endif // BITCOIN_NET_H