fea4e9eca5
dd777f3e12
Remove unused variable (practicalswift)cdf4089457
Remove redundant assignments (dead stores) (practicalswift) Pull request description: Remove redundant assignments (dead stores). Tree-SHA512: e852059b22a161c34a0f18a6a6ed798e2b35e6d2b9f23c526af0ec33e01f6a5bb1fa5ada6671ba183d7b02393ff0d397be5aa4b4e2edbd5e604c9a76ac48d249
105 lines
2.6 KiB
C++
105 lines
2.6 KiB
C++
// Copyright (c) 2016-2018 The Bitcoin Core developers
|
|
// Distributed under the MIT software license, see the accompanying
|
|
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
|
|
|
|
#include <iostream>
|
|
|
|
#include <bench/bench.h>
|
|
#include <bloom.h>
|
|
#include <hash.h>
|
|
#include <random.h>
|
|
#include <uint256.h>
|
|
#include <utiltime.h>
|
|
#include <crypto/ripemd160.h>
|
|
#include <crypto/sha1.h>
|
|
#include <crypto/sha256.h>
|
|
#include <crypto/sha512.h>
|
|
|
|
/* Number of bytes to hash per iteration */
|
|
static const uint64_t BUFFER_SIZE = 1000*1000;
|
|
|
|
static void RIPEMD160(benchmark::State& state)
|
|
{
|
|
uint8_t hash[CRIPEMD160::OUTPUT_SIZE];
|
|
std::vector<uint8_t> in(BUFFER_SIZE,0);
|
|
while (state.KeepRunning())
|
|
CRIPEMD160().Write(in.data(), in.size()).Finalize(hash);
|
|
}
|
|
|
|
static void SHA1(benchmark::State& state)
|
|
{
|
|
uint8_t hash[CSHA1::OUTPUT_SIZE];
|
|
std::vector<uint8_t> in(BUFFER_SIZE,0);
|
|
while (state.KeepRunning())
|
|
CSHA1().Write(in.data(), in.size()).Finalize(hash);
|
|
}
|
|
|
|
static void SHA256(benchmark::State& state)
|
|
{
|
|
uint8_t hash[CSHA256::OUTPUT_SIZE];
|
|
std::vector<uint8_t> in(BUFFER_SIZE,0);
|
|
while (state.KeepRunning())
|
|
CSHA256().Write(in.data(), in.size()).Finalize(hash);
|
|
}
|
|
|
|
static void SHA256_32b(benchmark::State& state)
|
|
{
|
|
std::vector<uint8_t> in(32,0);
|
|
while (state.KeepRunning()) {
|
|
CSHA256()
|
|
.Write(in.data(), in.size())
|
|
.Finalize(in.data());
|
|
}
|
|
}
|
|
|
|
static void SHA256D64_1024(benchmark::State& state)
|
|
{
|
|
std::vector<uint8_t> in(64 * 1024, 0);
|
|
while (state.KeepRunning()) {
|
|
SHA256D64(in.data(), in.data(), 1024);
|
|
}
|
|
}
|
|
|
|
static void SHA512(benchmark::State& state)
|
|
{
|
|
uint8_t hash[CSHA512::OUTPUT_SIZE];
|
|
std::vector<uint8_t> in(BUFFER_SIZE,0);
|
|
while (state.KeepRunning())
|
|
CSHA512().Write(in.data(), in.size()).Finalize(hash);
|
|
}
|
|
|
|
static void SipHash_32b(benchmark::State& state)
|
|
{
|
|
uint256 x;
|
|
uint64_t k1 = 0;
|
|
while (state.KeepRunning()) {
|
|
*((uint64_t*)x.begin()) = SipHashUint256(0, ++k1, x);
|
|
}
|
|
}
|
|
|
|
static void FastRandom_32bit(benchmark::State& state)
|
|
{
|
|
FastRandomContext rng(true);
|
|
while (state.KeepRunning()) {
|
|
rng.rand32();
|
|
}
|
|
}
|
|
|
|
static void FastRandom_1bit(benchmark::State& state)
|
|
{
|
|
FastRandomContext rng(true);
|
|
while (state.KeepRunning()) {
|
|
rng.randbool();
|
|
}
|
|
}
|
|
|
|
BENCHMARK(RIPEMD160, 440);
|
|
BENCHMARK(SHA1, 570);
|
|
BENCHMARK(SHA256, 340);
|
|
BENCHMARK(SHA512, 330);
|
|
|
|
BENCHMARK(SHA256_32b, 4700 * 1000);
|
|
BENCHMARK(SipHash_32b, 40 * 1000 * 1000);
|
|
BENCHMARK(SHA256D64_1024, 7400);
|
|
BENCHMARK(FastRandom_32bit, 110 * 1000 * 1000);
|
|
BENCHMARK(FastRandom_1bit, 440 * 1000 * 1000);
|