lbrycrd/test/functional/wallet.py
Jonas Schnelli d889c036cd
Merge #11403: SegWit wallet support
b224a47a1 Add address_types test (Pieter Wuille)
7ee54fd7c Support downgrading after recovered keypool witness keys (Pieter Wuille)
940a21932 SegWit wallet support (Pieter Wuille)
f37c64e47 Implicitly know about P2WPKH redeemscripts (Pieter Wuille)
57273f2b3 [test] Serialize CTransaction with witness by default (Pieter Wuille)
cf2c0b6f5 Support P2WPKH and P2SH-P2WPKH in dumpprivkey (Pieter Wuille)
37c03d3e0 Support P2WPKH addresses in create/addmultisig (Pieter Wuille)
3eaa003c8 Extend validateaddress information for P2SH-embedded witness (Pieter Wuille)
30a27dc5b Expose method to find key for a single-key destination (Pieter Wuille)
985c79552 Improve witness destination types and use them more (Pieter Wuille)
cbe197470 [refactor] GetAccount{PubKey,Address} -> GetAccountDestination (Pieter Wuille)
0c8ea6380 Abstract out IsSolvable from Witnessifier (Pieter Wuille)

Pull request description:

  This implements a minimum viable implementation of SegWit wallet support, based on top of #11389, and includes part of the functionality from #11089.

  Two new configuration options are added:
  * `-addresstype`, with options `legacy`, `p2sh`, and `bech32`. It controls what kind of addresses are produced by `getnewaddress`, `getaccountaddress`, and `createmultisigaddress`.
  * `-changetype`, with the same options, and by default equal to `-addresstype`, that controls what kind of change is used.

  All wallet private and public keys can be used for any type of address. Support for address types dependent on different derivation paths will need a major overhaul of how our internal detection of outputs work. I expect that that will happen for a next major version.

  The above also applies to imported keys, as having a distinction there but not for normal operations is a disaster for testing, and probably for comprehension of users. This has some ugly effects, like needing to associate the provided label to `importprivkey` with each style address for the corresponding key.

  To deal with witness outputs requiring a corresponding redeemscript in wallet, three approaches are used:
  * All SegWit addresses created through `getnewaddress` or multisig RPCs explicitly get their redeemscripts added to the wallet file. This means that downgrading after creating a witness address will work, as long as the wallet file is up to date.
  * All SegWit keys in the wallet get an _implicit_ redeemscript added, without it being written to the file. This means recovery of an old backup will work, as long as you use new software.
  * All keypool keys that are seen used in transactions explicitly get their redeemscripts added to the wallet files. This means that downgrading after recovering from a backup that includes a witness address will work.

  These approaches correspond to solutions 3a, 1a, and 5a respectively from https://gist.github.com/sipa/125cfa1615946d0c3f3eec2ad7f250a2. As argued there, there is no full solution for dealing with the case where you both downgrade and restore a backup, so that's also not implemented.

  `dumpwallet`, `importwallet`, `importmulti`, `signmessage` and `verifymessage` don't work with SegWit addresses yet. They're remaining TODOs, for this PR or a follow-up. Because of that, several tests unexpectedly run with `-addresstype=legacy` for now.

Tree-SHA512: d425dbe517c0422061ab8dacdc3a6ae47da071450932ed992c79559d922dff7b2574a31a8c94feccd3761c1dffb6422c50055e6dca8e3cf94a169bc95e39e959
2018-01-10 20:55:41 -10:00

446 lines
21 KiB
Python
Executable file

#!/usr/bin/env python3
# Copyright (c) 2014-2017 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test the wallet."""
from test_framework.test_framework import BitcoinTestFramework
from test_framework.util import *
class WalletTest(BitcoinTestFramework):
def set_test_params(self):
self.num_nodes = 4
self.setup_clean_chain = True
def setup_network(self):
self.add_nodes(4)
self.start_node(0)
self.start_node(1)
self.start_node(2)
connect_nodes_bi(self.nodes,0,1)
connect_nodes_bi(self.nodes,1,2)
connect_nodes_bi(self.nodes,0,2)
self.sync_all([self.nodes[0:3]])
def check_fee_amount(self, curr_balance, balance_with_fee, fee_per_byte, tx_size):
"""Return curr_balance after asserting the fee was in range"""
fee = balance_with_fee - curr_balance
assert_fee_amount(fee, tx_size, fee_per_byte * 1000)
return curr_balance
def get_vsize(self, txn):
return self.nodes[0].decoderawtransaction(txn)['vsize']
def run_test(self):
# Check that there's no UTXO on none of the nodes
assert_equal(len(self.nodes[0].listunspent()), 0)
assert_equal(len(self.nodes[1].listunspent()), 0)
assert_equal(len(self.nodes[2].listunspent()), 0)
self.log.info("Mining blocks...")
self.nodes[0].generate(1)
walletinfo = self.nodes[0].getwalletinfo()
assert_equal(walletinfo['immature_balance'], 50)
assert_equal(walletinfo['balance'], 0)
self.sync_all([self.nodes[0:3]])
self.nodes[1].generate(101)
self.sync_all([self.nodes[0:3]])
assert_equal(self.nodes[0].getbalance(), 50)
assert_equal(self.nodes[1].getbalance(), 50)
assert_equal(self.nodes[2].getbalance(), 0)
# Check that only first and second nodes have UTXOs
utxos = self.nodes[0].listunspent()
assert_equal(len(utxos), 1)
assert_equal(len(self.nodes[1].listunspent()), 1)
assert_equal(len(self.nodes[2].listunspent()), 0)
self.log.info("test gettxout")
confirmed_txid, confirmed_index = utxos[0]["txid"], utxos[0]["vout"]
# First, outputs that are unspent both in the chain and in the
# mempool should appear with or without include_mempool
txout = self.nodes[0].gettxout(txid=confirmed_txid, n=confirmed_index, include_mempool=False)
assert_equal(txout['value'], 50)
txout = self.nodes[0].gettxout(txid=confirmed_txid, n=confirmed_index, include_mempool=True)
assert_equal(txout['value'], 50)
# Send 21 BTC from 0 to 2 using sendtoaddress call.
# Locked memory should use at least 32 bytes to sign each transaction
self.log.info("test getmemoryinfo")
memory_before = self.nodes[0].getmemoryinfo()
self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 11)
mempool_txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 10)
memory_after = self.nodes[0].getmemoryinfo()
assert(memory_before['locked']['used'] + 64 <= memory_after['locked']['used'])
self.log.info("test gettxout (second part)")
# utxo spent in mempool should be visible if you exclude mempool
# but invisible if you include mempool
txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, False)
assert_equal(txout['value'], 50)
txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, True)
assert txout is None
# new utxo from mempool should be invisible if you exclude mempool
# but visible if you include mempool
txout = self.nodes[0].gettxout(mempool_txid, 0, False)
assert txout is None
txout1 = self.nodes[0].gettxout(mempool_txid, 0, True)
txout2 = self.nodes[0].gettxout(mempool_txid, 1, True)
# note the mempool tx will have randomly assigned indices
# but 10 will go to node2 and the rest will go to node0
balance = self.nodes[0].getbalance()
assert_equal(set([txout1['value'], txout2['value']]), set([10, balance]))
walletinfo = self.nodes[0].getwalletinfo()
assert_equal(walletinfo['immature_balance'], 0)
# Have node0 mine a block, thus it will collect its own fee.
self.nodes[0].generate(1)
self.sync_all([self.nodes[0:3]])
# Exercise locking of unspent outputs
unspent_0 = self.nodes[2].listunspent()[0]
unspent_0 = {"txid": unspent_0["txid"], "vout": unspent_0["vout"]}
assert_raises_rpc_error(-8, "Invalid parameter, expected locked output", self.nodes[2].lockunspent, True, [unspent_0])
self.nodes[2].lockunspent(False, [unspent_0])
assert_raises_rpc_error(-8, "Invalid parameter, output already locked", self.nodes[2].lockunspent, False, [unspent_0])
assert_raises_rpc_error(-4, "Insufficient funds", self.nodes[2].sendtoaddress, self.nodes[2].getnewaddress(), 20)
assert_equal([unspent_0], self.nodes[2].listlockunspent())
self.nodes[2].lockunspent(True, [unspent_0])
assert_equal(len(self.nodes[2].listlockunspent()), 0)
assert_raises_rpc_error(-8, "Invalid parameter, unknown transaction",
self.nodes[2].lockunspent, False,
[{"txid": "0000000000000000000000000000000000", "vout": 0}])
assert_raises_rpc_error(-8, "Invalid parameter, vout index out of bounds",
self.nodes[2].lockunspent, False,
[{"txid": unspent_0["txid"], "vout": 999}])
# Have node1 generate 100 blocks (so node0 can recover the fee)
self.nodes[1].generate(100)
self.sync_all([self.nodes[0:3]])
# node0 should end up with 100 btc in block rewards plus fees, but
# minus the 21 plus fees sent to node2
assert_equal(self.nodes[0].getbalance(), 100-21)
assert_equal(self.nodes[2].getbalance(), 21)
# Node0 should have two unspent outputs.
# Create a couple of transactions to send them to node2, submit them through
# node1, and make sure both node0 and node2 pick them up properly:
node0utxos = self.nodes[0].listunspent(1)
assert_equal(len(node0utxos), 2)
# create both transactions
txns_to_send = []
for utxo in node0utxos:
inputs = []
outputs = {}
inputs.append({ "txid" : utxo["txid"], "vout" : utxo["vout"]})
outputs[self.nodes[2].getnewaddress("from1")] = utxo["amount"] - 3
raw_tx = self.nodes[0].createrawtransaction(inputs, outputs)
txns_to_send.append(self.nodes[0].signrawtransaction(raw_tx))
# Have node 1 (miner) send the transactions
self.nodes[1].sendrawtransaction(txns_to_send[0]["hex"], True)
self.nodes[1].sendrawtransaction(txns_to_send[1]["hex"], True)
# Have node1 mine a block to confirm transactions:
self.nodes[1].generate(1)
self.sync_all([self.nodes[0:3]])
assert_equal(self.nodes[0].getbalance(), 0)
assert_equal(self.nodes[2].getbalance(), 94)
assert_equal(self.nodes[2].getbalance("from1"), 94-21)
# Verify that a spent output cannot be locked anymore
spent_0 = {"txid": node0utxos[0]["txid"], "vout": node0utxos[0]["vout"]}
assert_raises_rpc_error(-8, "Invalid parameter, expected unspent output", self.nodes[0].lockunspent, False, [spent_0])
# Send 10 BTC normal
address = self.nodes[0].getnewaddress("test")
fee_per_byte = Decimal('0.001') / 1000
self.nodes[2].settxfee(fee_per_byte * 1000)
txid = self.nodes[2].sendtoaddress(address, 10, "", "", False)
self.nodes[2].generate(1)
self.sync_all([self.nodes[0:3]])
node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), Decimal('84'), fee_per_byte, self.get_vsize(self.nodes[2].getrawtransaction(txid)))
assert_equal(self.nodes[0].getbalance(), Decimal('10'))
# Send 10 BTC with subtract fee from amount
txid = self.nodes[2].sendtoaddress(address, 10, "", "", True)
self.nodes[2].generate(1)
self.sync_all([self.nodes[0:3]])
node_2_bal -= Decimal('10')
assert_equal(self.nodes[2].getbalance(), node_2_bal)
node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), Decimal('20'), fee_per_byte, self.get_vsize(self.nodes[2].getrawtransaction(txid)))
# Sendmany 10 BTC
txid = self.nodes[2].sendmany('from1', {address: 10}, 0, "", [])
self.nodes[2].generate(1)
self.sync_all([self.nodes[0:3]])
node_0_bal += Decimal('10')
node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), node_2_bal - Decimal('10'), fee_per_byte, self.get_vsize(self.nodes[2].getrawtransaction(txid)))
assert_equal(self.nodes[0].getbalance(), node_0_bal)
# Sendmany 10 BTC with subtract fee from amount
txid = self.nodes[2].sendmany('from1', {address: 10}, 0, "", [address])
self.nodes[2].generate(1)
self.sync_all([self.nodes[0:3]])
node_2_bal -= Decimal('10')
assert_equal(self.nodes[2].getbalance(), node_2_bal)
node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), node_0_bal + Decimal('10'), fee_per_byte, self.get_vsize(self.nodes[2].getrawtransaction(txid)))
# Test ResendWalletTransactions:
# Create a couple of transactions, then start up a fourth
# node (nodes[3]) and ask nodes[0] to rebroadcast.
# EXPECT: nodes[3] should have those transactions in its mempool.
txid1 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1)
txid2 = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1)
sync_mempools(self.nodes[0:2])
self.start_node(3)
connect_nodes_bi(self.nodes, 0, 3)
sync_blocks(self.nodes)
relayed = self.nodes[0].resendwallettransactions()
assert_equal(set(relayed), {txid1, txid2})
sync_mempools(self.nodes)
assert(txid1 in self.nodes[3].getrawmempool())
# Exercise balance rpcs
assert_equal(self.nodes[0].getwalletinfo()["unconfirmed_balance"], 1)
assert_equal(self.nodes[0].getunconfirmedbalance(), 1)
#check if we can list zero value tx as available coins
#1. create rawtx
#2. hex-changed one output to 0.0
#3. sign and send
#4. check if recipient (node0) can list the zero value tx
usp = self.nodes[1].listunspent()
inputs = [{"txid":usp[0]['txid'], "vout":usp[0]['vout']}]
outputs = {self.nodes[1].getnewaddress(): 49.998, self.nodes[0].getnewaddress(): 11.11}
rawTx = self.nodes[1].createrawtransaction(inputs, outputs).replace("c0833842", "00000000") #replace 11.11 with 0.0 (int32)
decRawTx = self.nodes[1].decoderawtransaction(rawTx)
signedRawTx = self.nodes[1].signrawtransaction(rawTx)
decRawTx = self.nodes[1].decoderawtransaction(signedRawTx['hex'])
zeroValueTxid= decRawTx['txid']
self.nodes[1].sendrawtransaction(signedRawTx['hex'])
self.sync_all()
self.nodes[1].generate(1) #mine a block
self.sync_all()
unspentTxs = self.nodes[0].listunspent() #zero value tx must be in listunspents output
found = False
for uTx in unspentTxs:
if uTx['txid'] == zeroValueTxid:
found = True
assert_equal(uTx['amount'], Decimal('0'))
assert(found)
#do some -walletbroadcast tests
self.stop_nodes()
self.start_node(0, ["-walletbroadcast=0"])
self.start_node(1, ["-walletbroadcast=0"])
self.start_node(2, ["-walletbroadcast=0"])
connect_nodes_bi(self.nodes,0,1)
connect_nodes_bi(self.nodes,1,2)
connect_nodes_bi(self.nodes,0,2)
self.sync_all([self.nodes[0:3]])
txIdNotBroadcasted = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2)
txObjNotBroadcasted = self.nodes[0].gettransaction(txIdNotBroadcasted)
self.nodes[1].generate(1) #mine a block, tx should not be in there
self.sync_all([self.nodes[0:3]])
assert_equal(self.nodes[2].getbalance(), node_2_bal) #should not be changed because tx was not broadcasted
#now broadcast from another node, mine a block, sync, and check the balance
self.nodes[1].sendrawtransaction(txObjNotBroadcasted['hex'])
self.nodes[1].generate(1)
self.sync_all([self.nodes[0:3]])
node_2_bal += 2
txObjNotBroadcasted = self.nodes[0].gettransaction(txIdNotBroadcasted)
assert_equal(self.nodes[2].getbalance(), node_2_bal)
#create another tx
txIdNotBroadcasted = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2)
#restart the nodes with -walletbroadcast=1
self.stop_nodes()
self.start_node(0)
self.start_node(1)
self.start_node(2)
connect_nodes_bi(self.nodes,0,1)
connect_nodes_bi(self.nodes,1,2)
connect_nodes_bi(self.nodes,0,2)
sync_blocks(self.nodes[0:3])
self.nodes[0].generate(1)
sync_blocks(self.nodes[0:3])
node_2_bal += 2
#tx should be added to balance because after restarting the nodes tx should be broadcastet
assert_equal(self.nodes[2].getbalance(), node_2_bal)
#send a tx with value in a string (PR#6380 +)
txId = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "2")
txObj = self.nodes[0].gettransaction(txId)
assert_equal(txObj['amount'], Decimal('-2'))
txId = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "0.0001")
txObj = self.nodes[0].gettransaction(txId)
assert_equal(txObj['amount'], Decimal('-0.0001'))
#check if JSON parser can handle scientific notation in strings
txId = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "1e-4")
txObj = self.nodes[0].gettransaction(txId)
assert_equal(txObj['amount'], Decimal('-0.0001'))
# This will raise an exception because the amount type is wrong
assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].sendtoaddress, self.nodes[2].getnewaddress(), "1f-4")
# This will raise an exception since generate does not accept a string
assert_raises_rpc_error(-1, "not an integer", self.nodes[0].generate, "2")
# Import address and private key to check correct behavior of spendable unspents
# 1. Send some coins to generate new UTXO
address_to_import = self.nodes[2].getnewaddress()
txid = self.nodes[0].sendtoaddress(address_to_import, 1)
self.nodes[0].generate(1)
self.sync_all([self.nodes[0:3]])
# 2. Import address from node2 to node1
self.nodes[1].importaddress(address_to_import)
# 3. Validate that the imported address is watch-only on node1
assert(self.nodes[1].validateaddress(address_to_import)["iswatchonly"])
# 4. Check that the unspents after import are not spendable
assert_array_result(self.nodes[1].listunspent(),
{"address": address_to_import},
{"spendable": False})
# 5. Import private key of the previously imported address on node1
priv_key = self.nodes[2].dumpprivkey(address_to_import)
self.nodes[1].importprivkey(priv_key)
# 6. Check that the unspents are now spendable on node1
assert_array_result(self.nodes[1].listunspent(),
{"address": address_to_import},
{"spendable": True})
# Mine a block from node0 to an address from node1
cbAddr = self.nodes[1].getnewaddress()
blkHash = self.nodes[0].generatetoaddress(1, cbAddr)[0]
cbTxId = self.nodes[0].getblock(blkHash)['tx'][0]
self.sync_all([self.nodes[0:3]])
# Check that the txid and balance is found by node1
self.nodes[1].gettransaction(cbTxId)
# check if wallet or blockchain maintenance changes the balance
self.sync_all([self.nodes[0:3]])
blocks = self.nodes[0].generate(2)
self.sync_all([self.nodes[0:3]])
balance_nodes = [self.nodes[i].getbalance() for i in range(3)]
block_count = self.nodes[0].getblockcount()
# Check modes:
# - True: unicode escaped as \u....
# - False: unicode directly as UTF-8
for mode in [True, False]:
self.nodes[0].ensure_ascii = mode
# unicode check: Basic Multilingual Plane, Supplementary Plane respectively
for s in [u'рыба', u'𝅘𝅥𝅯']:
addr = self.nodes[0].getaccountaddress(s)
label = self.nodes[0].getaccount(addr)
assert_equal(label, s)
assert(s in self.nodes[0].listaccounts().keys())
self.nodes[0].ensure_ascii = True # restore to default
# maintenance tests
maintenance = [
'-rescan',
'-reindex',
'-zapwallettxes=1',
'-zapwallettxes=2',
# disabled until issue is fixed: https://github.com/bitcoin/bitcoin/issues/7463
# '-salvagewallet',
]
chainlimit = 6
for m in maintenance:
self.log.info("check " + m)
self.stop_nodes()
# set lower ancestor limit for later
self.start_node(0, [m, "-limitancestorcount="+str(chainlimit)])
self.start_node(1, [m, "-limitancestorcount="+str(chainlimit)])
self.start_node(2, [m, "-limitancestorcount="+str(chainlimit)])
while m == '-reindex' and [block_count] * 3 != [self.nodes[i].getblockcount() for i in range(3)]:
# reindex will leave rpc warm up "early"; Wait for it to finish
time.sleep(0.1)
assert_equal(balance_nodes, [self.nodes[i].getbalance() for i in range(3)])
# Exercise listsinceblock with the last two blocks
coinbase_tx_1 = self.nodes[0].listsinceblock(blocks[0])
assert_equal(coinbase_tx_1["lastblock"], blocks[1])
assert_equal(len(coinbase_tx_1["transactions"]), 1)
assert_equal(coinbase_tx_1["transactions"][0]["blockhash"], blocks[1])
assert_equal(len(self.nodes[0].listsinceblock(blocks[1])["transactions"]), 0)
# ==Check that wallet prefers to use coins that don't exceed mempool limits =====
# Get all non-zero utxos together
chain_addrs = [self.nodes[0].getnewaddress(), self.nodes[0].getnewaddress()]
singletxid = self.nodes[0].sendtoaddress(chain_addrs[0], self.nodes[0].getbalance(), "", "", True)
self.nodes[0].generate(1)
node0_balance = self.nodes[0].getbalance()
# Split into two chains
rawtx = self.nodes[0].createrawtransaction([{"txid":singletxid, "vout":0}], {chain_addrs[0]:node0_balance/2-Decimal('0.01'), chain_addrs[1]:node0_balance/2-Decimal('0.01')})
signedtx = self.nodes[0].signrawtransaction(rawtx)
singletxid = self.nodes[0].sendrawtransaction(signedtx["hex"])
self.nodes[0].generate(1)
# Make a long chain of unconfirmed payments without hitting mempool limit
# Each tx we make leaves only one output of change on a chain 1 longer
# Since the amount to send is always much less than the outputs, we only ever need one output
# So we should be able to generate exactly chainlimit txs for each original output
sending_addr = self.nodes[1].getnewaddress()
txid_list = []
for i in range(chainlimit*2):
txid_list.append(self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001')))
assert_equal(self.nodes[0].getmempoolinfo()['size'], chainlimit*2)
assert_equal(len(txid_list), chainlimit*2)
# Without walletrejectlongchains, we will still generate a txid
# The tx will be stored in the wallet but not accepted to the mempool
extra_txid = self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001'))
assert(extra_txid not in self.nodes[0].getrawmempool())
assert(extra_txid in [tx["txid"] for tx in self.nodes[0].listtransactions()])
self.nodes[0].abandontransaction(extra_txid)
total_txs = len(self.nodes[0].listtransactions("*",99999))
# Try with walletrejectlongchains
# Double chain limit but require combining inputs, so we pass SelectCoinsMinConf
self.stop_node(0)
self.start_node(0, extra_args=["-walletrejectlongchains", "-limitancestorcount="+str(2*chainlimit)])
# wait for loadmempool
timeout = 10
while (timeout > 0 and len(self.nodes[0].getrawmempool()) < chainlimit*2):
time.sleep(0.5)
timeout -= 0.5
assert_equal(len(self.nodes[0].getrawmempool()), chainlimit*2)
node0_balance = self.nodes[0].getbalance()
# With walletrejectlongchains we will not create the tx and store it in our wallet.
assert_raises_rpc_error(-4, "Transaction has too long of a mempool chain", self.nodes[0].sendtoaddress, sending_addr, node0_balance - Decimal('0.01'))
# Verify nothing new in wallet
assert_equal(total_txs, len(self.nodes[0].listtransactions("*",99999)))
if __name__ == '__main__':
WalletTest().main()