seeder/netbase.cpp
2011-12-16 16:56:36 +01:00

740 lines
19 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2011 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file license.txt or http://www.opensource.org/licenses/mit-license.php.
#define BSD_SOURCE
#include <string.h>
#include <errno.h>
#include <stdarg.h>
#include "netbase.h"
#include "util.h"
#ifndef WIN32
#include <sys/fcntl.h>
#endif
using namespace std;
string strprintf(const std::string &format, ...)
{
char buffer[50000];
char* p = buffer;
int limit = sizeof(buffer);
int ret;
loop
{
va_list arg_ptr;
va_start(arg_ptr, format);
ret = vsnprintf(p, limit, format.c_str(), arg_ptr);
va_end(arg_ptr);
if (ret >= 0 && ret < limit)
break;
if (p != buffer)
delete[] p;
limit *= 2;
p = new char[limit];
if (p == NULL)
throw std::bad_alloc();
}
string str(p, p+ret);
if (p != buffer)
delete[] p;
return str;
}
int nConnectTimeout = 5000;
static const unsigned char pchIPv4[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff };
bool static LookupIntern(const char *pszName, std::vector<CIP>& vIP, int nMaxSolutions, bool fAllowLookup)
{
vIP.clear();
struct addrinfo aiHint = {};
aiHint.ai_socktype = SOCK_STREAM;
aiHint.ai_protocol = IPPROTO_TCP;
#ifdef WIN32
# ifdef USE_IPV6
aiHint.ai_family = AF_UNSPEC;
aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST;
# else
aiHint.ai_family = AF_INET;
aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST;
# endif
#else
# ifdef USE_IPV6
aiHint.ai_family = AF_UNSPEC;
aiHint.ai_flags = AI_ADDRCONFIG | (fAllowLookup ? 0 : AI_NUMERICHOST);
# else
aiHint.ai_family = AF_INET;
aiHint.ai_flags = AI_ADDRCONFIG | (fAllowLookup ? 0 : AI_NUMERICHOST);
# endif
#endif
struct addrinfo *aiRes = NULL;
int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes);
if (nErr)
return false;
struct addrinfo *aiTrav = aiRes;
while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions))
{
if (aiTrav->ai_family == AF_INET)
{
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in));
vIP.push_back(CIP(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr));
}
#ifdef USE_IPV6
if (aiTrav->ai_family == AF_INET6)
{
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6));
vIP.push_back(CIP(((struct sockaddr_in6*)(aiTrav->ai_addr))->sin6_addr));
}
#endif
aiTrav = aiTrav->ai_next;
}
freeaddrinfo(aiRes);
return (vIP.size() > 0);
}
bool LookupHost(const char *pszName, std::vector<CIP>& vIP, int nMaxSolutions, bool fAllowLookup)
{
if (pszName[0] == 0)
return false;
char psz[256];
char *pszHost = psz;
strncpy(psz, pszName, sizeof(psz)-1);
psz[255] = 0;
if (psz[0] == '[' && psz[strlen(psz)-1] == ']')
{
pszHost = psz+1;
psz[strlen(psz)-1] = 0;
}
return LookupIntern(pszHost, vIP, nMaxSolutions, fAllowLookup);
}
bool LookupHostNumeric(const char *pszName, std::vector<CIP>& vIP, int nMaxSolutions)
{
return LookupHost(pszName, vIP, nMaxSolutions, false);
}
bool Lookup(const char *pszName, CIPPort& addr, int portDefault, bool fAllowLookup)
{
if (pszName[0] == 0)
return false;
int port = portDefault;
char psz[256];
char *pszHost = psz;
strncpy(psz, pszName, sizeof(psz)-1);
psz[255] = 0;
char* pszColon = strrchr(psz+1,':');
char *pszPortEnd = NULL;
int portParsed = pszColon ? strtoul(pszColon+1, &pszPortEnd, 10) : 0;
if (pszColon && pszPortEnd && pszPortEnd[0] == 0)
{
if (psz[0] == '[' && pszColon[-1] == ']')
{
pszHost = psz+1;
pszColon[-1] = 0;
}
else
pszColon[0] = 0;
if (port >= 0 && port <= USHRT_MAX)
port = portParsed;
}
else
{
if (psz[0] == '[' && psz[strlen(psz)-1] == ']')
{
pszHost = psz+1;
psz[strlen(psz)-1] = 0;
}
}
std::vector<CIP> vIP;
bool fRet = LookupIntern(pszHost, vIP, 1, fAllowLookup);
if (!fRet)
return false;
addr = CIPPort(vIP[0], port);
return true;
}
bool LookupNumeric(const char *pszName, CIPPort& addr, int portDefault)
{
return Lookup(pszName, addr, portDefault, false);
}
bool CIPPort::ConnectSocket(SOCKET& hSocketRet, int nTimeout) const
{
hSocketRet = INVALID_SOCKET;
SOCKET hSocket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (hSocket == INVALID_SOCKET)
return false;
#ifdef SO_NOSIGPIPE
int set = 1;
setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int));
#endif
bool fProxy = (fUseProxy && IsRoutable());
struct sockaddr_in sockaddr;
if (fProxy)
addrProxy.GetSockAddr(&sockaddr);
else
GetSockAddr(&sockaddr);
#ifdef WIN32
u_long fNonblock = 1;
if (ioctlsocket(hSocket, FIONBIO, &fNonblock) == SOCKET_ERROR)
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == -1)
#endif
{
closesocket(hSocket);
return false;
}
if (connect(hSocket, (struct sockaddr*)&sockaddr, sizeof(sockaddr)) == SOCKET_ERROR)
{
// WSAEINVAL is here because some legacy version of winsock uses it
if (WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK || WSAGetLastError() == WSAEINVAL)
{
struct timeval timeout;
timeout.tv_sec = nTimeout / 1000;
timeout.tv_usec = (nTimeout % 1000) * 1000;
fd_set fdset;
FD_ZERO(&fdset);
FD_SET(hSocket, &fdset);
int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout);
if (nRet == 0)
{
printf("connection timeout\n");
closesocket(hSocket);
return false;
}
if (nRet == SOCKET_ERROR)
{
printf("select() for connection failed: %i\n",WSAGetLastError());
closesocket(hSocket);
return false;
}
socklen_t nRetSize = sizeof(nRet);
#ifdef WIN32
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR)
#else
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR)
#endif
{
printf("getsockopt() for connection failed: %i\n",WSAGetLastError());
closesocket(hSocket);
return false;
}
if (nRet != 0)
{
printf("connect() failed after select(): %s\n",strerror(nRet));
closesocket(hSocket);
return false;
}
}
#ifdef WIN32
else if (WSAGetLastError() != WSAEISCONN)
#else
else
#endif
{
printf("connect() failed: %i\n",WSAGetLastError());
closesocket(hSocket);
return false;
}
}
// this isn't even strictly necessary
// CNode::ConnectNode immediately turns the socket back to non-blocking
// but we'll turn it back to blocking just in case
#ifdef WIN32
fNonblock = 0;
if (ioctlsocket(hSocket, FIONBIO, &fNonblock) == SOCKET_ERROR)
#else
fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags & !O_NONBLOCK) == SOCKET_ERROR)
#endif
{
closesocket(hSocket);
return false;
}
if (fProxy)
{
printf("proxy connecting %s\n", ToString().c_str());
char pszSocks4IP[] = "\4\1\0\0\0\0\0\0user";
struct sockaddr_in addr;
GetSockAddr(&addr);
memcpy(pszSocks4IP + 2, &addr.sin_port, 2);
memcpy(pszSocks4IP + 4, &addr.sin_addr, 4);
char* pszSocks4 = pszSocks4IP;
int nSize = sizeof(pszSocks4IP);
int ret = send(hSocket, pszSocks4, nSize, MSG_NOSIGNAL);
if (ret != nSize)
{
closesocket(hSocket);
return false;
}
char pchRet[8];
if (recv(hSocket, pchRet, 8, 0) != 8)
{
closesocket(hSocket);
return false;
}
if (pchRet[1] != 0x5a)
{
closesocket(hSocket);
if (pchRet[1] != 0x5b)
printf("ERROR: Proxy returned error %d\n", pchRet[1]);
return false;
}
printf("proxy connected %s\n", ToString().c_str());
}
hSocketRet = hSocket;
return true;
}
void CIP::Init()
{
memset(ip, 0, 16);
}
void CIP::SetIP(const CIP& ipIn)
{
memcpy(ip, ipIn.ip, sizeof(ip));
}
CIP::CIP()
{
Init();
}
CIP::CIP(const struct in_addr& ipv4Addr)
{
memcpy(ip, pchIPv4, 12);
memcpy(ip+12, &ipv4Addr, 4);
}
#ifdef USE_IPV6
CIP::CIP(const struct in6_addr& ipv6Addr)
{
memcpy(ip, &ipv6Addr, 16);
}
#endif
CIP::CIP(const char *pszIp, bool fAllowLookup)
{
Init();
std::vector<CIP> vIP;
if (LookupHost(pszIp, vIP, 1, fAllowLookup))
*this = vIP[0];
}
CIP::CIP(const std::string &strIp, bool fAllowLookup)
{
Init();
std::vector<CIP> vIP;
if (LookupHost(strIp.c_str(), vIP, 1, fAllowLookup))
*this = vIP[0];
}
int CIP::GetByte(int n) const
{
return ip[15-n];
}
bool CIP::IsIPv4() const
{
return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0);
}
bool CIP::IsRFC1918() const
{
return IsIPv4() && (
GetByte(3) == 10 ||
(GetByte(3) == 192 && GetByte(2) == 168) ||
(GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31)));
}
bool CIP::IsRFC3927() const
{
return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254);
}
bool CIP::IsRFC3849() const
{
return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8;
}
bool CIP::IsRFC3964() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x02);
}
bool CIP::IsRFC6052() const
{
static const unsigned char pchRFC6052[] = {0,0x64,0xFF,0x9B,0,0,0,0,0,0,0,0};
return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0);
}
bool CIP::IsRFC4380() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0);
}
bool CIP::IsRFC4862() const
{
static const unsigned char pchRFC4862[] = {0xFE,0x80,0,0,0,0,0,0};
return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0);
}
bool CIP::IsRFC4193() const
{
return ((GetByte(15) & 0xFE) == 0xFC);
}
bool CIP::IsRFC6145() const
{
static const unsigned char pchRFC6145[] = {0,0,0,0,0,0,0,0,0xFF,0xFF,0,0};
return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0);
}
bool CIP::IsRFC4843() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && GetByte(12) & 0xF0 == 0x10);
}
bool CIP::IsLocal() const
{
// IPv4 loopback
if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0))
return true;
// IPv6 loopback (::1/128)
static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
if (memcmp(ip, pchLocal, 16) == 0)
return true;
return false;
}
bool CIP::IsMulticast() const
{
return (IsIPv4() && (GetByte(3) & 0xF0) == 0xE0)
|| (GetByte(15) == 0xFF);
}
bool CIP::IsValid() const
{
// Clean up 3-byte shifted addresses caused by garbage in size field
// of addr messages from versions before 0.2.9 checksum.
// Two consecutive addr messages look like this:
// header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 addr26 addr26...
// so if the first length field is garbled, it reads the second batch
// of addr misaligned by 3 bytes.
if (memcmp(ip, pchIPv4+3, sizeof(pchIPv4)-3) == 0)
return false;
// unspecified IPv6 address (::/128)
unsigned char ipNone[16] = {};
if (memcmp(ip, ipNone, 16) == 0)
return false;
// documentation IPv6 address
if (IsRFC3849())
return false;
if (IsIPv4())
{
// INADDR_NONE
uint32_t ipNone = INADDR_NONE;
if (memcmp(ip+12, &ipNone, 4) == 0)
return false;
// 0
ipNone = 0;
if (memcmp(ip+12, &ipNone, 4) == 0)
return false;
}
return true;
}
bool CIP::IsRoutable() const
{
return IsValid() && !(IsRFC1918() || IsRFC3927() || IsRFC4862() || IsRFC4193() || IsRFC4843() || IsLocal());
}
std::string CIP::ToString() const
{
if (IsIPv4())
return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0));
else
return strprintf("%x:%x:%x:%x:%x:%x:%x:%x",
GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12),
GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8),
GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4),
GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0));
}
bool operator==(const CIP& a, const CIP& b)
{
return (memcmp(a.ip, b.ip, 16) == 0);
}
bool operator!=(const CIP& a, const CIP& b)
{
return (memcmp(a.ip, b.ip, 16) == 0);
}
bool operator<(const CIP& a, const CIP& b)
{
return (memcmp(a.ip, b.ip, 16) <= 0);
}
bool CIP::GetInAddr(struct in_addr* pipv4Addr) const
{
if (!IsIPv4())
return false;
memcpy(pipv4Addr, ip+12, 4);
return true;
}
#ifdef USE_IPV6
bool CIP::GetIn6Addr(struct in6_addr* pipv6Addr) const
{
memcpy(pipv6Addr, ip, 16);
return true;
}
#endif
// get canonical identifier of an address' group
// no two connections will be attempted to addresses with the same group
std::vector<unsigned char> CIP::GetGroup() const
{
std::vector<unsigned char> vchRet;
int nClass = 0; // 0=IPv6, 1=IPv4, 255=unroutable
int nStartByte = 0;
int nBits = 16;
// for unroutable addresses, each address is considered different
if (!IsRoutable())
{
nClass = 255;
nBits = 128;
}
// for IPv4 addresses, '1' + the 16 higher-order bits of the IP
// includes mapped IPv4, SIIT translated IPv4, and the well-known prefix
else if (IsIPv4() || IsRFC6145() || IsRFC6052())
{
nClass = 1;
nStartByte = 12;
}
// for 6to4 tunneled addresses, use the encapsulated IPv4 address
else if (IsRFC3964())
{
nClass = 1;
nStartByte = 2;
}
// for Teredo-tunneled IPv6 addresses, use the encapsulated IPv4 address
else if (IsRFC4380())
{
vchRet.push_back(1);
vchRet.push_back(GetByte(3) ^ 0xFF);
vchRet.push_back(GetByte(2) ^ 0xFF);
return vchRet;
}
// for he.net, use /36 groups
else if (GetByte(15) == 0x20 && GetByte(14) == 0x11 && GetByte(13) == 0x04 && GetByte(12) == 0x70)
nBits = 36;
// for the rest of the IPv6 network, use /32 groups
else
nBits = 32;
vchRet.push_back(nClass);
while (nBits >= 8)
{
vchRet.push_back(GetByte(15 - nStartByte));
nStartByte++;
nBits -= 8;
}
if (nBits > 0)
vchRet.push_back(GetByte(15 - nStartByte) | ((1 << nBits) - 1));
return vchRet;
}
int64 CIP::GetHash() const
{
if (IsIPv4())
{
// reconstruct ip in reversed-byte order
// (the original definition of the randomizer used network-order integers on little endian architecture)
int64 ip = GetByte(0) << 24 + GetByte(1) << 16 + GetByte(2) << 8 + GetByte(3);
return ip * 7789;
}
// for IPv6 addresses, use separate multipliers for each byte
// these numbers are from the hexadecimal expansion of 3/Pi:
static const int64 nByteMult[16] =
{0xF4764525, 0x75661FBE, 0xFA3B03BA, 0xEFCF4CA1, 0x4913E065, 0xDA655862, 0xFD7A1581, 0xCE19A812,
0x92B6A557, 0x6374BC50, 0x096DC65F, 0x0EBA5B2B, 0x7D2CE0AB, 0x09BE7ADE, 0x5CC350EF, 0xC618E6C7};
int64 nRet = 0;
for (int n=0; n<16; n++)
nRet += nByteMult[n]*GetByte(n);
return nRet;
}
void CIP::print() const
{
printf("CIP(%s)\n", ToString().c_str());
}
void CIPPort::Init()
{
port = 0;
}
CIPPort::CIPPort()
{
Init();
}
CIPPort::CIPPort(const CIP& cip, unsigned short portIn) : CIP(cip), port(portIn)
{
}
CIPPort::CIPPort(const struct in_addr& ipv4Addr, unsigned short portIn) : CIP(ipv4Addr), port(portIn)
{
}
#ifdef USE_IPV6
CIPPort::CIPPort(const struct in6_addr& ipv6Addr, unsigned short portIn) : CIP(ipv6Addr), port(portIn)
{
}
#endif
CIPPort::CIPPort(const struct sockaddr_in& addr) : CIP(addr.sin_addr), port(ntohs(addr.sin_port))
{
assert(addr.sin_family == AF_INET);
}
#ifdef USE_IPV6
CIPPort::CIPPort(const struct sockaddr_in6 &addr) : CIP(addr.sin6_addr), port(ntohs(addr.sin6_port))
{
assert(addr.sin6_family == AF_INET6);
}
#endif
CIPPort::CIPPort(const char *pszIpPort, bool fAllowLookup)
{
Init();
CIPPort ip;
if (Lookup(pszIpPort, ip, 0, fAllowLookup))
*this = ip;
}
CIPPort::CIPPort(const char *pszIp, int portIn, bool fAllowLookup)
{
std::vector<CIP> ip;
if (LookupHost(pszIp, ip, 1, fAllowLookup))
*this = CIPPort(ip[0], portIn);
}
CIPPort::CIPPort(const std::string &strIpPort, bool fAllowLookup)
{
Init();
CIPPort ip;
if (Lookup(strIpPort.c_str(), ip, 0, fAllowLookup))
*this = ip;
}
CIPPort::CIPPort(const std::string &strIp, int portIn, bool fAllowLookup)
{
std::vector<CIP> ip;
if (LookupHost(strIp.c_str(), ip, 1, fAllowLookup))
*this = CIPPort(ip[0], portIn);
}
unsigned short CIPPort::GetPort() const
{
return port;
}
bool operator==(const CIPPort& a, const CIPPort& b)
{
return (operator==((CIP)a, (CIP)b) && a.port == b.port);
}
bool operator!=(const CIPPort& a, const CIPPort& b)
{
return (operator!=((CIP)a, (CIP)b) || a.port != b.port);
}
bool operator<(const CIPPort& a, const CIPPort& b)
{
return (operator<((CIP)a, (CIP)b) || a.port < b.port);
}
bool CIPPort::GetSockAddr(struct sockaddr_in* paddr) const
{
if (!IsIPv4())
return false;
memset(paddr, 0, sizeof(struct sockaddr_in));
if (!GetInAddr(&paddr->sin_addr))
return false;
paddr->sin_family = AF_INET;
paddr->sin_port = htons(port);
}
#ifdef USE_IPV6
bool CIPPort::GetSockAddr6(struct sockaddr_in6* paddr) const
{
memset(paddr, 0, sizeof(struct sockaddr_in6));
if (!GetIn6Addr(&paddr->sin6_addr))
return false;
paddr->sin6_family = AF_INET6;
paddr->sin6_port = htons(port);
}
#endif
std::vector<unsigned char> CIPPort::GetKey() const
{
std::vector<unsigned char> vKey;
vKey.resize(18);
memcpy(&vKey[0], ip, 16);
vKey[16] = port / 0x100;
vKey[17] = port & 0x0FF;
return vKey;
}
std::string CIPPort::ToString() const
{
return CIP::ToString() + strprintf(":%i", port);
}
void CIPPort::print() const
{
printf("CIPPort(%s)\n", ToString().c_str());
}
void CIPPort::SetPort(unsigned short portIn)
{
port = portIn;
}