seeder/netbase.cpp
2014-07-21 15:59:25 +04:00

1135 lines
31 KiB
C++

// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "netbase.h"
#include "util.h"
#ifndef WIN32
#include <sys/fcntl.h>
#endif
#include "strlcpy.h"
#include <boost/algorithm/string/case_conv.hpp> // for to_lower()
#define printf my_printf
using namespace std;
// Settings
typedef std::pair<CService, int> proxyType;
static proxyType proxyInfo[NET_MAX];
static proxyType nameproxyInfo;
int nConnectTimeout = 5000;
bool fNameLookup = false;
static const unsigned char pchIPv4[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff };
enum Network ParseNetwork(std::string net) {
boost::to_lower(net);
if (net == "ipv4") return NET_IPV4;
if (net == "ipv6") return NET_IPV6;
if (net == "tor") return NET_TOR;
if (net == "i2p") return NET_I2P;
return NET_UNROUTABLE;
}
void SplitHostPort(std::string in, int &portOut, std::string &hostOut) {
size_t colon = in.find_last_of(':');
// if a : is found, and it either follows a [...], or no other : is in the string, treat it as port separator
bool fHaveColon = colon != in.npos;
bool fBracketed = fHaveColon && (in[0]=='[' && in[colon-1]==']'); // if there is a colon, and in[0]=='[', colon is not 0, so in[colon-1] is safe
bool fMultiColon = fHaveColon && (in.find_last_of(':',colon-1) != in.npos);
if (fHaveColon && (colon==0 || fBracketed || !fMultiColon)) {
char *endp = NULL;
int n = strtol(in.c_str() + colon + 1, &endp, 10);
if (endp && *endp == 0 && n >= 0) {
in = in.substr(0, colon);
if (n > 0 && n < 0x10000)
portOut = n;
}
}
if (in.size()>0 && in[0] == '[' && in[in.size()-1] == ']')
hostOut = in.substr(1, in.size()-2);
else
hostOut = in;
}
bool static LookupIntern(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup)
{
vIP.clear();
{
CNetAddr addr;
if (addr.SetSpecial(std::string(pszName))) {
vIP.push_back(addr);
return true;
}
}
struct addrinfo aiHint;
memset(&aiHint, 0, sizeof(struct addrinfo));
aiHint.ai_socktype = SOCK_STREAM;
aiHint.ai_protocol = IPPROTO_TCP;
#ifdef WIN32
aiHint.ai_family = AF_UNSPEC;
aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST;
#else
aiHint.ai_family = AF_UNSPEC;
aiHint.ai_flags = fAllowLookup ? AI_ADDRCONFIG : AI_NUMERICHOST;
#endif
struct addrinfo *aiRes = NULL;
int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes);
if (nErr)
return false;
struct addrinfo *aiTrav = aiRes;
while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions))
{
if (aiTrav->ai_family == AF_INET)
{
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in));
vIP.push_back(CNetAddr(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr));
}
if (aiTrav->ai_family == AF_INET6)
{
assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6));
vIP.push_back(CNetAddr(((struct sockaddr_in6*)(aiTrav->ai_addr))->sin6_addr));
}
aiTrav = aiTrav->ai_next;
}
freeaddrinfo(aiRes);
return (vIP.size() > 0);
}
bool LookupHost(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup)
{
if (pszName[0] == 0)
return false;
char psz[256];
char *pszHost = psz;
strlcpy(psz, pszName, sizeof(psz));
if (psz[0] == '[' && psz[strlen(psz)-1] == ']')
{
pszHost = psz+1;
psz[strlen(psz)-1] = 0;
}
return LookupIntern(pszHost, vIP, nMaxSolutions, fAllowLookup);
}
bool LookupHostNumeric(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions)
{
return LookupHost(pszName, vIP, nMaxSolutions, false);
}
bool Lookup(const char *pszName, std::vector<CService>& vAddr, int portDefault, bool fAllowLookup, unsigned int nMaxSolutions)
{
if (pszName[0] == 0)
return false;
int port = portDefault;
std::string hostname = "";
SplitHostPort(std::string(pszName), port, hostname);
std::vector<CNetAddr> vIP;
bool fRet = LookupIntern(hostname.c_str(), vIP, nMaxSolutions, fAllowLookup);
if (!fRet)
return false;
vAddr.resize(vIP.size());
for (unsigned int i = 0; i < vIP.size(); i++)
vAddr[i] = CService(vIP[i], port);
return true;
}
bool Lookup(const char *pszName, CService& addr, int portDefault, bool fAllowLookup)
{
std::vector<CService> vService;
bool fRet = Lookup(pszName, vService, portDefault, fAllowLookup, 1);
if (!fRet)
return false;
addr = vService[0];
return true;
}
bool LookupNumeric(const char *pszName, CService& addr, int portDefault)
{
return Lookup(pszName, addr, portDefault, false);
}
bool static Socks4(const CService &addrDest, SOCKET& hSocket)
{
printf("SOCKS4 connecting %s\n", addrDest.ToString().c_str());
if (!addrDest.IsIPv4())
{
closesocket(hSocket);
return error("Proxy destination is not IPv4");
}
char pszSocks4IP[] = "\4\1\0\0\0\0\0\0user";
struct sockaddr_in addr;
socklen_t len = sizeof(addr);
if (!addrDest.GetSockAddr((struct sockaddr*)&addr, &len) || addr.sin_family != AF_INET)
{
closesocket(hSocket);
return error("Cannot get proxy destination address");
}
memcpy(pszSocks4IP + 2, &addr.sin_port, 2);
memcpy(pszSocks4IP + 4, &addr.sin_addr, 4);
char* pszSocks4 = pszSocks4IP;
int nSize = sizeof(pszSocks4IP);
int ret = send(hSocket, pszSocks4, nSize, MSG_NOSIGNAL);
if (ret != nSize)
{
closesocket(hSocket);
return error("Error sending to proxy");
}
char pchRet[8];
if (recv(hSocket, pchRet, 8, 0) != 8)
{
closesocket(hSocket);
return error("Error reading proxy response");
}
if (pchRet[1] != 0x5a)
{
closesocket(hSocket);
if (pchRet[1] != 0x5b)
printf("ERROR: Proxy returned error %d\n", pchRet[1]);
return false;
}
printf("SOCKS4 connected %s\n", addrDest.ToString().c_str());
return true;
}
bool static Socks5(string strDest, int port, SOCKET& hSocket)
{
printf("SOCKS5 connecting %s\n", strDest.c_str());
if (strDest.size() > 255)
{
closesocket(hSocket);
return error("Hostname too long");
}
char pszSocks5Init[] = "\5\1\0";
char *pszSocks5 = pszSocks5Init;
ssize_t nSize = sizeof(pszSocks5Init) - 1;
ssize_t ret = send(hSocket, pszSocks5, nSize, MSG_NOSIGNAL);
if (ret != nSize)
{
closesocket(hSocket);
return error("Error sending to proxy");
}
char pchRet1[2];
if (recv(hSocket, pchRet1, 2, 0) != 2)
{
closesocket(hSocket);
return error("Error reading proxy response");
}
if (pchRet1[0] != 0x05 || pchRet1[1] != 0x00)
{
closesocket(hSocket);
return error("Proxy failed to initialize");
}
string strSocks5("\5\1");
strSocks5 += '\000'; strSocks5 += '\003';
strSocks5 += static_cast<char>(std::min((int)strDest.size(), 255));
strSocks5 += strDest;
strSocks5 += static_cast<char>((port >> 8) & 0xFF);
strSocks5 += static_cast<char>((port >> 0) & 0xFF);
ret = send(hSocket, strSocks5.c_str(), strSocks5.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)strSocks5.size())
{
closesocket(hSocket);
return error("Error sending to proxy");
}
char pchRet2[4];
if (recv(hSocket, pchRet2, 4, 0) != 4)
{
closesocket(hSocket);
return error("Error reading proxy response");
}
if (pchRet2[0] != 0x05)
{
closesocket(hSocket);
return error("Proxy failed to accept request");
}
if (pchRet2[1] != 0x00)
{
closesocket(hSocket);
switch (pchRet2[1])
{
case 0x01: return error("Proxy error: general failure");
case 0x02: return error("Proxy error: connection not allowed");
case 0x03: return error("Proxy error: network unreachable");
case 0x04: return error("Proxy error: host unreachable");
case 0x05: return error("Proxy error: connection refused");
case 0x06: return error("Proxy error: TTL expired");
case 0x07: return error("Proxy error: protocol error");
case 0x08: return error("Proxy error: address type not supported");
default: return error("Proxy error: unknown");
}
}
if (pchRet2[2] != 0x00)
{
closesocket(hSocket);
return error("Error: malformed proxy response");
}
char pchRet3[256];
switch (pchRet2[3])
{
case 0x01: ret = recv(hSocket, pchRet3, 4, 0) != 4; break;
case 0x04: ret = recv(hSocket, pchRet3, 16, 0) != 16; break;
case 0x03:
{
ret = recv(hSocket, pchRet3, 1, 0) != 1;
if (ret)
return error("Error reading from proxy");
int nRecv = pchRet3[0];
ret = recv(hSocket, pchRet3, nRecv, 0) != nRecv;
break;
}
default: closesocket(hSocket); return error("Error: malformed proxy response");
}
if (ret)
{
closesocket(hSocket);
return error("Error reading from proxy");
}
if (recv(hSocket, pchRet3, 2, 0) != 2)
{
closesocket(hSocket);
return error("Error reading from proxy");
}
printf("SOCKS5 connected %s\n", strDest.c_str());
return true;
}
bool static ConnectSocketDirectly(const CService &addrConnect, SOCKET& hSocketRet, int nTimeout)
{
hSocketRet = INVALID_SOCKET;
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (!addrConnect.GetSockAddr((struct sockaddr*)&sockaddr, &len)) {
printf("Cannot connect to %s: unsupported network\n", addrConnect.ToString().c_str());
return false;
}
SOCKET hSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP);
if (hSocket == INVALID_SOCKET)
return false;
#ifdef SO_NOSIGPIPE
int set = 1;
setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int));
#endif
#ifdef WIN32
u_long fNonblock = 1;
if (ioctlsocket(hSocket, FIONBIO, &fNonblock) == SOCKET_ERROR)
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == -1)
#endif
{
closesocket(hSocket);
return false;
}
if (connect(hSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
{
// WSAEINVAL is here because some legacy version of winsock uses it
if (WSAGetLastError() == WSAEINPROGRESS || WSAGetLastError() == WSAEWOULDBLOCK || WSAGetLastError() == WSAEINVAL)
{
struct timeval timeout;
timeout.tv_sec = nTimeout / 1000;
timeout.tv_usec = (nTimeout % 1000) * 1000;
fd_set fdset;
FD_ZERO(&fdset);
FD_SET(hSocket, &fdset);
int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout);
if (nRet == 0)
{
printf("connection timeout\n");
closesocket(hSocket);
return false;
}
if (nRet == SOCKET_ERROR)
{
printf("select() for connection failed: %i\n",WSAGetLastError());
closesocket(hSocket);
return false;
}
socklen_t nRetSize = sizeof(nRet);
#ifdef WIN32
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR)
#else
if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR)
#endif
{
printf("getsockopt() for connection failed: %i\n",WSAGetLastError());
closesocket(hSocket);
return false;
}
if (nRet != 0)
{
printf("connect() failed after select(): %s\n",strerror(nRet));
closesocket(hSocket);
return false;
}
}
#ifdef WIN32
else if (WSAGetLastError() != WSAEISCONN)
#else
else
#endif
{
printf("connect() failed: %i\n",WSAGetLastError());
closesocket(hSocket);
return false;
}
}
// this isn't even strictly necessary
// CNode::ConnectNode immediately turns the socket back to non-blocking
// but we'll turn it back to blocking just in case
#ifdef WIN32
fNonblock = 0;
if (ioctlsocket(hSocket, FIONBIO, &fNonblock) == SOCKET_ERROR)
#else
fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags & !O_NONBLOCK) == SOCKET_ERROR)
#endif
{
closesocket(hSocket);
return false;
}
hSocketRet = hSocket;
return true;
}
bool SetProxy(enum Network net, CService addrProxy, int nSocksVersion) {
assert(net >= 0 && net < NET_MAX);
if (nSocksVersion != 0 && nSocksVersion != 4 && nSocksVersion != 5)
return false;
if (nSocksVersion != 0 && !addrProxy.IsValid())
return false;
proxyInfo[net] = std::make_pair(addrProxy, nSocksVersion);
return true;
}
bool GetProxy(enum Network net, CService &addrProxy) {
assert(net >= 0 && net < NET_MAX);
if (!proxyInfo[net].second)
return false;
addrProxy = proxyInfo[net].first;
return true;
}
bool SetNameProxy(CService addrProxy, int nSocksVersion) {
if (nSocksVersion != 0 && nSocksVersion != 5)
return false;
if (nSocksVersion != 0 && !addrProxy.IsValid())
return false;
nameproxyInfo = std::make_pair(addrProxy, nSocksVersion);
return true;
}
bool GetNameProxy() {
return nameproxyInfo.second != 0;
}
bool IsProxy(const CNetAddr &addr) {
for (int i=0; i<NET_MAX; i++) {
if (proxyInfo[i].second && (addr == (CNetAddr)proxyInfo[i].first))
return true;
}
return false;
}
bool ConnectSocket(const CService &addrDest, SOCKET& hSocketRet, int nTimeout)
{
const proxyType &proxy = proxyInfo[addrDest.GetNetwork()];
// no proxy needed
if (!proxy.second)
return ConnectSocketDirectly(addrDest, hSocketRet, nTimeout);
SOCKET hSocket = INVALID_SOCKET;
// first connect to proxy server
if (!ConnectSocketDirectly(proxy.first, hSocket, nTimeout))
return false;
// do socks negotiation
switch (proxy.second) {
case 4:
if (!Socks4(addrDest, hSocket))
return false;
break;
case 5:
if (!Socks5(addrDest.ToStringIP(), addrDest.GetPort(), hSocket))
return false;
break;
default:
return false;
}
hSocketRet = hSocket;
return true;
}
bool ConnectSocketByName(CService &addr, SOCKET& hSocketRet, const char *pszDest, int portDefault, int nTimeout)
{
string strDest;
int port = portDefault;
SplitHostPort(string(pszDest), port, strDest);
SOCKET hSocket = INVALID_SOCKET;
CService addrResolved(CNetAddr(strDest, fNameLookup && !nameproxyInfo.second), port);
if (addrResolved.IsValid()) {
addr = addrResolved;
return ConnectSocket(addr, hSocketRet, nTimeout);
}
addr = CService("0.0.0.0:0");
if (!nameproxyInfo.second)
return false;
if (!ConnectSocketDirectly(nameproxyInfo.first, hSocket, nTimeout))
return false;
switch(nameproxyInfo.second)
{
default:
case 4: return false;
case 5:
if (!Socks5(strDest, port, hSocket))
return false;
break;
}
hSocketRet = hSocket;
return true;
}
void CNetAddr::Init()
{
memset(ip, 0, 16);
}
void CNetAddr::SetIP(const CNetAddr& ipIn)
{
memcpy(ip, ipIn.ip, sizeof(ip));
}
static const unsigned char pchOnionCat[] = {0xFD,0x87,0xD8,0x7E,0xEB,0x43};
static const unsigned char pchGarliCat[] = {0xFD,0x60,0xDB,0x4D,0xDD,0xB5};
bool CNetAddr::SetSpecial(const std::string &strName)
{
if (strName.size()>6 && strName.substr(strName.size() - 6, 6) == ".onion") {
std::vector<unsigned char> vchAddr = DecodeBase32(strName.substr(0, strName.size() - 6).c_str());
if (vchAddr.size() != 16-sizeof(pchOnionCat))
return false;
memcpy(ip, pchOnionCat, sizeof(pchOnionCat));
for (unsigned int i=0; i<16-sizeof(pchOnionCat); i++)
ip[i + sizeof(pchOnionCat)] = vchAddr[i];
return true;
}
if (strName.size()>11 && strName.substr(strName.size() - 11, 11) == ".oc.b32.i2p") {
std::vector<unsigned char> vchAddr = DecodeBase32(strName.substr(0, strName.size() - 11).c_str());
if (vchAddr.size() != 16-sizeof(pchGarliCat))
return false;
memcpy(ip, pchOnionCat, sizeof(pchGarliCat));
for (unsigned int i=0; i<16-sizeof(pchGarliCat); i++)
ip[i + sizeof(pchGarliCat)] = vchAddr[i];
return true;
}
return false;
}
CNetAddr::CNetAddr()
{
Init();
}
CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
{
memcpy(ip, pchIPv4, 12);
memcpy(ip+12, &ipv4Addr, 4);
}
CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr)
{
memcpy(ip, &ipv6Addr, 16);
}
CNetAddr::CNetAddr(const char *pszIp, bool fAllowLookup)
{
Init();
std::vector<CNetAddr> vIP;
if (LookupHost(pszIp, vIP, 1, fAllowLookup))
*this = vIP[0];
}
CNetAddr::CNetAddr(const std::string &strIp, bool fAllowLookup)
{
Init();
std::vector<CNetAddr> vIP;
if (LookupHost(strIp.c_str(), vIP, 1, fAllowLookup))
*this = vIP[0];
}
unsigned int CNetAddr::GetByte(int n) const
{
return ip[15-n];
}
bool CNetAddr::IsIPv4() const
{
return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0);
}
bool CNetAddr::IsIPv6() const
{
return (!IsIPv4() && !IsTor() && !IsI2P());
}
bool CNetAddr::IsRFC1918() const
{
return IsIPv4() && (
GetByte(3) == 10 ||
(GetByte(3) == 192 && GetByte(2) == 168) ||
(GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31)));
}
bool CNetAddr::IsRFC3927() const
{
return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254);
}
bool CNetAddr::IsRFC3849() const
{
return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8;
}
bool CNetAddr::IsRFC3964() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x02);
}
bool CNetAddr::IsRFC6052() const
{
static const unsigned char pchRFC6052[] = {0,0x64,0xFF,0x9B,0,0,0,0,0,0,0,0};
return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0);
}
bool CNetAddr::IsRFC4380() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0);
}
bool CNetAddr::IsRFC4862() const
{
static const unsigned char pchRFC4862[] = {0xFE,0x80,0,0,0,0,0,0};
return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0);
}
bool CNetAddr::IsRFC4193() const
{
return ((GetByte(15) & 0xFE) == 0xFC);
}
bool CNetAddr::IsRFC6145() const
{
static const unsigned char pchRFC6145[] = {0,0,0,0,0,0,0,0,0xFF,0xFF,0,0};
return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0);
}
bool CNetAddr::IsRFC4843() const
{
return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x10);
}
bool CNetAddr::IsTor() const
{
return (memcmp(ip, pchOnionCat, sizeof(pchOnionCat)) == 0);
}
bool CNetAddr::IsI2P() const
{
return (memcmp(ip, pchGarliCat, sizeof(pchGarliCat)) == 0);
}
bool CNetAddr::IsLocal() const
{
// IPv4 loopback
if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0))
return true;
// IPv6 loopback (::1/128)
static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
if (memcmp(ip, pchLocal, 16) == 0)
return true;
return false;
}
bool CNetAddr::IsMulticast() const
{
return (IsIPv4() && (GetByte(3) & 0xF0) == 0xE0)
|| (GetByte(15) == 0xFF);
}
bool CNetAddr::IsValid() const
{
// Cleanup 3-byte shifted addresses caused by garbage in size field
// of addr messages from versions before 0.2.9 checksum.
// Two consecutive addr messages look like this:
// header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 addr26 addr26...
// so if the first length field is garbled, it reads the second batch
// of addr misaligned by 3 bytes.
if (memcmp(ip, pchIPv4+3, sizeof(pchIPv4)-3) == 0)
return false;
// unspecified IPv6 address (::/128)
unsigned char ipNone[16] = {};
if (memcmp(ip, ipNone, 16) == 0)
return false;
// documentation IPv6 address
if (IsRFC3849())
return false;
if (IsIPv4())
{
// INADDR_NONE
uint32_t ipNone = INADDR_NONE;
if (memcmp(ip+12, &ipNone, 4) == 0)
return false;
// 0
ipNone = 0;
if (memcmp(ip+12, &ipNone, 4) == 0)
return false;
}
return true;
}
bool CNetAddr::IsRoutable() const
{
return IsValid() && !(IsRFC1918() || IsRFC3927() || IsRFC4862() || (IsRFC4193() && !IsTor() && !IsI2P()) || IsRFC4843() || IsLocal());
}
enum Network CNetAddr::GetNetwork() const
{
if (!IsRoutable())
return NET_UNROUTABLE;
if (IsIPv4())
return NET_IPV4;
if (IsTor())
return NET_TOR;
if (IsI2P())
return NET_I2P;
return NET_IPV6;
}
std::string CNetAddr::ToStringIP() const
{
if (IsTor())
return EncodeBase32(&ip[6], 10) + ".onion";
if (IsI2P())
return EncodeBase32(&ip[6], 10) + ".oc.b32.i2p";
CService serv(*this, 0);
struct sockaddr_storage sockaddr;
socklen_t socklen = sizeof(sockaddr);
if (serv.GetSockAddr((struct sockaddr*)&sockaddr, &socklen)) {
char name[1025] = "";
if (!getnameinfo((const struct sockaddr*)&sockaddr, socklen, name, sizeof(name), NULL, 0, NI_NUMERICHOST))
return std::string(name);
}
if (IsIPv4())
return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0));
else
return strprintf("%x:%x:%x:%x:%x:%x:%x:%x",
GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12),
GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8),
GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4),
GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0));
}
std::string CNetAddr::ToString() const
{
return ToStringIP();
}
bool operator==(const CNetAddr& a, const CNetAddr& b)
{
return (memcmp(a.ip, b.ip, 16) == 0);
}
bool operator!=(const CNetAddr& a, const CNetAddr& b)
{
return (memcmp(a.ip, b.ip, 16) != 0);
}
bool operator<(const CNetAddr& a, const CNetAddr& b)
{
return (memcmp(a.ip, b.ip, 16) < 0);
}
bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
{
if (!IsIPv4())
return false;
memcpy(pipv4Addr, ip+12, 4);
return true;
}
bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
{
memcpy(pipv6Addr, ip, 16);
return true;
}
// get canonical identifier of an address' group
// no two connections will be attempted to addresses with the same group
std::vector<unsigned char> CNetAddr::GetGroup() const
{
std::vector<unsigned char> vchRet;
int nClass = NET_IPV6;
int nStartByte = 0;
int nBits = 16;
// all local addresses belong to the same group
if (IsLocal())
{
nClass = 255;
nBits = 0;
}
// all unroutable addresses belong to the same group
if (!IsRoutable())
{
nClass = NET_UNROUTABLE;
nBits = 0;
}
// for IPv4 addresses, '1' + the 16 higher-order bits of the IP
// includes mapped IPv4, SIIT translated IPv4, and the well-known prefix
else if (IsIPv4() || IsRFC6145() || IsRFC6052())
{
nClass = NET_IPV4;
nStartByte = 12;
}
// for 6to4 tunnelled addresses, use the encapsulated IPv4 address
else if (IsRFC3964())
{
nClass = NET_IPV4;
nStartByte = 2;
}
// for Teredo-tunnelled IPv6 addresses, use the encapsulated IPv4 address
else if (IsRFC4380())
{
vchRet.push_back(NET_IPV4);
vchRet.push_back(GetByte(3) ^ 0xFF);
vchRet.push_back(GetByte(2) ^ 0xFF);
return vchRet;
}
else if (IsTor())
{
nClass = NET_TOR;
nStartByte = 6;
nBits = 4;
}
else if (IsI2P())
{
nClass = NET_I2P;
nStartByte = 6;
nBits = 4;
}
// for he.net, use /36 groups
else if (GetByte(15) == 0x20 && GetByte(14) == 0x11 && GetByte(13) == 0x04 && GetByte(12) == 0x70)
nBits = 36;
// for the rest of the IPv6 network, use /32 groups
else
nBits = 32;
vchRet.push_back(nClass);
while (nBits >= 8)
{
vchRet.push_back(GetByte(15 - nStartByte));
nStartByte++;
nBits -= 8;
}
if (nBits > 0)
vchRet.push_back(GetByte(15 - nStartByte) | ((1 << nBits) - 1));
return vchRet;
}
uint64 CNetAddr::GetHash() const
{
uint256 hash = Hash(&ip[0], &ip[16]);
uint64 nRet;
memcpy(&nRet, &hash, sizeof(nRet));
return nRet;
}
void CNetAddr::print() const
{
printf("CNetAddr(%s)\n", ToString().c_str());
}
// private extensions to enum Network, only returned by GetExtNetwork,
// and only used in GetReachabilityFrom
static const int NET_UNKNOWN = NET_MAX + 0;
static const int NET_TEREDO = NET_MAX + 1;
int static GetExtNetwork(const CNetAddr *addr)
{
if (addr == NULL)
return NET_UNKNOWN;
if (addr->IsRFC4380())
return NET_TEREDO;
return addr->GetNetwork();
}
/** Calculates a metric for how reachable (*this) is from a given partner */
int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const
{
enum Reachability {
REACH_UNREACHABLE,
REACH_DEFAULT,
REACH_TEREDO,
REACH_IPV6_WEAK,
REACH_IPV4,
REACH_IPV6_STRONG,
REACH_PRIVATE
};
if (!IsRoutable())
return REACH_UNREACHABLE;
int ourNet = GetExtNetwork(this);
int theirNet = GetExtNetwork(paddrPartner);
bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
switch(theirNet) {
case NET_IPV4:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_IPV4: return REACH_IPV4;
}
case NET_IPV6:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_TEREDO: return REACH_TEREDO;
case NET_IPV4: return REACH_IPV4;
case NET_IPV6: return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
}
case NET_TOR:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_IPV4: return REACH_IPV4; // Tor users can connect to IPv4 as well
case NET_TOR: return REACH_PRIVATE;
}
case NET_I2P:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_I2P: return REACH_PRIVATE;
}
case NET_TEREDO:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_TEREDO: return REACH_TEREDO;
case NET_IPV6: return REACH_IPV6_WEAK;
case NET_IPV4: return REACH_IPV4;
}
case NET_UNKNOWN:
case NET_UNROUTABLE:
default:
switch(ourNet) {
default: return REACH_DEFAULT;
case NET_TEREDO: return REACH_TEREDO;
case NET_IPV6: return REACH_IPV6_WEAK;
case NET_IPV4: return REACH_IPV4;
case NET_I2P: return REACH_PRIVATE; // assume connections from unroutable addresses are
case NET_TOR: return REACH_PRIVATE; // either from Tor/I2P, or don't care about our address
}
}
}
void CService::Init()
{
port = 0;
}
CService::CService()
{
Init();
}
CService::CService(const CNetAddr& cip, unsigned short portIn) : CNetAddr(cip), port(portIn)
{
}
CService::CService(const struct in_addr& ipv4Addr, unsigned short portIn) : CNetAddr(ipv4Addr), port(portIn)
{
}
CService::CService(const struct in6_addr& ipv6Addr, unsigned short portIn) : CNetAddr(ipv6Addr), port(portIn)
{
}
CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
{
assert(addr.sin_family == AF_INET);
}
CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr), port(ntohs(addr.sin6_port))
{
assert(addr.sin6_family == AF_INET6);
}
bool CService::SetSockAddr(const struct sockaddr *paddr)
{
switch (paddr->sa_family) {
case AF_INET:
*this = CService(*(const struct sockaddr_in*)paddr);
return true;
case AF_INET6:
*this = CService(*(const struct sockaddr_in6*)paddr);
return true;
default:
return false;
}
}
CService::CService(const char *pszIpPort, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(pszIpPort, ip, 0, fAllowLookup))
*this = ip;
}
CService::CService(const char *pszIpPort, int portDefault, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(pszIpPort, ip, portDefault, fAllowLookup))
*this = ip;
}
CService::CService(const std::string &strIpPort, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(strIpPort.c_str(), ip, 0, fAllowLookup))
*this = ip;
}
CService::CService(const std::string &strIpPort, int portDefault, bool fAllowLookup)
{
Init();
CService ip;
if (Lookup(strIpPort.c_str(), ip, portDefault, fAllowLookup))
*this = ip;
}
unsigned short CService::GetPort() const
{
return port;
}
bool operator==(const CService& a, const CService& b)
{
return (CNetAddr)a == (CNetAddr)b && a.port == b.port;
}
bool operator!=(const CService& a, const CService& b)
{
return (CNetAddr)a != (CNetAddr)b || a.port != b.port;
}
bool operator<(const CService& a, const CService& b)
{
return (CNetAddr)a < (CNetAddr)b || ((CNetAddr)a == (CNetAddr)b && a.port < b.port);
}
bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
{
if (IsIPv4()) {
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
return false;
*addrlen = sizeof(struct sockaddr_in);
struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
memset(paddrin, 0, *addrlen);
if (!GetInAddr(&paddrin->sin_addr))
return false;
paddrin->sin_family = AF_INET;
paddrin->sin_port = htons(port);
return true;
}
if (IsIPv6()) {
if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
return false;
*addrlen = sizeof(struct sockaddr_in6);
struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
memset(paddrin6, 0, *addrlen);
if (!GetIn6Addr(&paddrin6->sin6_addr))
return false;
paddrin6->sin6_family = AF_INET6;
paddrin6->sin6_port = htons(port);
return true;
}
return false;
}
std::vector<unsigned char> CService::GetKey() const
{
std::vector<unsigned char> vKey;
vKey.resize(18);
memcpy(&vKey[0], ip, 16);
vKey[16] = port / 0x100;
vKey[17] = port & 0x0FF;
return vKey;
}
std::string CService::ToStringPort() const
{
return strprintf("%u", port);
}
std::string CService::ToStringIPPort() const
{
if (IsIPv4() || IsTor() || IsI2P()) {
return ToStringIP() + ":" + ToStringPort();
} else {
return "[" + ToStringIP() + "]:" + ToStringPort();
}
}
std::string CService::ToString() const
{
return ToStringIPPort();
}
void CService::print() const
{
printf("CService(%s)\n", ToString().c_str());
}
void CService::SetPort(unsigned short portIn)
{
port = portIn;
}