tracker/storage/memory/peer_store.go
2017-06-03 15:47:58 -04:00

597 lines
14 KiB
Go

package memory
import (
"encoding/binary"
"errors"
"net"
"runtime"
"sync"
"sync/atomic"
"time"
log "github.com/Sirupsen/logrus"
"github.com/prometheus/client_golang/prometheus"
"gopkg.in/yaml.v2"
"github.com/chihaya/chihaya/bittorrent"
"github.com/chihaya/chihaya/storage"
)
func init() {
// Register Prometheus metrics.
prometheus.MustRegister(promGCDurationMilliseconds)
prometheus.MustRegister(promInfohashesCount)
prometheus.MustRegister(promSeedersCount, promLeechersCount)
// Register the storage driver.
storage.RegisterDriver("memory", driver{})
}
var promGCDurationMilliseconds = prometheus.NewHistogram(prometheus.HistogramOpts{
Name: "chihaya_storage_memory_gc_duration_milliseconds",
Help: "The time it takes to perform storage garbage collection",
Buckets: prometheus.ExponentialBuckets(9.375, 2, 10),
})
var promInfohashesCount = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "chihaya_storage_memory_infohashes_count",
Help: "The number of infohashes tracked",
})
var promSeedersCount = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "chihaya_storage_seeders_count",
Help: "The number of seeders tracked",
})
var promLeechersCount = prometheus.NewGauge(prometheus.GaugeOpts{
Name: "chihaya_storage_leechers_count",
Help: "The number of leechers tracked",
})
// recordGCDuration records the duration of a GC sweep.
func recordGCDuration(duration time.Duration) {
promGCDurationMilliseconds.Observe(float64(duration.Nanoseconds()) / float64(time.Millisecond))
}
// recordInfohashesDelta records a change in the number of Infohashes tracked.
func recordInfohashesDelta(delta float64) {
promInfohashesCount.Add(delta)
}
type driver struct{}
func (d driver) NewPeerStore(icfg interface{}) (storage.PeerStore, error) {
// Marshal the config back into bytes.
bytes, err := yaml.Marshal(icfg)
if err != nil {
return nil, err
}
// Unmarshal the bytes into the proper config type.
var cfg Config
err = yaml.Unmarshal(bytes, &cfg)
if err != nil {
return nil, err
}
return New(cfg)
}
// ErrInvalidGCInterval is returned for a GarbageCollectionInterval that is
// less than or equal to zero.
var ErrInvalidGCInterval = errors.New("invalid garbage collection interval")
// Config holds the configuration of a memory PeerStore.
type Config struct {
GarbageCollectionInterval time.Duration `yaml:"gc_interval"`
PrometheusReportingInterval time.Duration `yaml:"prometheus_reporting_interval"`
PeerLifetime time.Duration `yaml:"peer_lifetime"`
ShardCount int `yaml:"shard_count"`
}
// LogFields renders the current config as a set of Logrus fields.
func (cfg Config) LogFields() log.Fields {
return log.Fields{
"gcInterval": cfg.GarbageCollectionInterval,
"peerLifetime": cfg.PeerLifetime,
"shardCount": cfg.ShardCount,
}
}
// New creates a new PeerStore backed by memory.
func New(cfg Config) (storage.PeerStore, error) {
var shardCount int
if cfg.ShardCount > 0 {
shardCount = cfg.ShardCount
} else {
log.Warnln("storage: shardCount not configured, using 1 as default value.")
shardCount = 1
}
if cfg.GarbageCollectionInterval <= 0 {
return nil, ErrInvalidGCInterval
}
ps := &peerStore{
shards: make([]*peerShard, shardCount*2),
closing: make(chan struct{}),
}
for i := 0; i < shardCount*2; i++ {
ps.shards[i] = &peerShard{swarms: make(map[bittorrent.InfoHash]swarm)}
}
ps.wg.Add(1)
go func() {
defer ps.wg.Done()
for {
select {
case <-ps.closing:
return
case <-time.After(cfg.GarbageCollectionInterval):
before := time.Now().Add(-cfg.PeerLifetime)
log.Debugln("memory: purging peers with no announces since", before)
ps.collectGarbage(before)
}
}
}()
ps.wg.Add(1)
go func() {
defer ps.wg.Done()
t := time.NewTicker(1 * time.Second)
for {
select {
case <-ps.closing:
t.Stop()
return
case now := <-t.C:
ps.setClock(now.UnixNano())
}
}
}()
ps.wg.Add(1)
go func() {
defer ps.wg.Done()
if cfg.PrometheusReportingInterval <= 0 {
cfg.PrometheusReportingInterval = 1
log.Warn("storage: PrometheusReportingInterval not specified/invalid, defaulting to 1 second")
}
t := time.NewTicker(cfg.PrometheusReportingInterval)
for {
select {
case <-ps.closing:
t.Stop()
return
case <-t.C:
before := time.Now()
ps.populateProm()
log.Debugf("memory: populateProm() took %s", time.Since(before))
}
}
}()
return ps, nil
}
type serializedPeer string
type peerShard struct {
swarms map[bittorrent.InfoHash]swarm
numSeeders uint64
numLeechers uint64
sync.RWMutex
}
type swarm struct {
// map serialized peer to mtime
seeders map[serializedPeer]int64
leechers map[serializedPeer]int64
}
type peerStore struct {
shards []*peerShard
closing chan struct{}
// clock stores the current time nanoseconds, updated every second.
// Must be accessed atomically!
clock int64
wg sync.WaitGroup
}
// populateProm aggregates metrics over all shards and then posts them to
// prometheus.
func (ps *peerStore) populateProm() {
var numInfohashes, numSeeders, numLeechers uint64
for _, s := range ps.shards {
s.RLock()
numInfohashes += uint64(len(s.swarms))
numSeeders += s.numSeeders
numLeechers += s.numLeechers
s.RUnlock()
}
promInfohashesCount.Set(float64(numInfohashes))
promSeedersCount.Set(float64(numSeeders))
promLeechersCount.Set(float64(numLeechers))
}
var _ storage.PeerStore = &peerStore{}
func (ps *peerStore) getClock() int64 {
return atomic.LoadInt64(&ps.clock)
}
func (ps *peerStore) setClock(to int64) {
atomic.StoreInt64(&ps.clock, to)
}
func (ps *peerStore) shardIndex(infoHash bittorrent.InfoHash, af bittorrent.AddressFamily) uint32 {
// There are twice the amount of shards specified by the user, the first
// half is dedicated to IPv4 swarms and the second half is dedicated to
// IPv6 swarms.
idx := binary.BigEndian.Uint32(infoHash[:4]) % (uint32(len(ps.shards)) / 2)
if af == bittorrent.IPv6 {
idx += uint32(len(ps.shards) / 2)
}
return idx
}
func newPeerKey(p bittorrent.Peer) serializedPeer {
b := make([]byte, 20+2+len(p.IP.IP))
copy(b[:20], p.ID[:])
binary.BigEndian.PutUint16(b[20:22], p.Port)
copy(b[22:], p.IP.IP)
return serializedPeer(b)
}
func decodePeerKey(pk serializedPeer) bittorrent.Peer {
peer := bittorrent.Peer{
ID: bittorrent.PeerIDFromString(string(pk[:20])),
Port: binary.BigEndian.Uint16([]byte(pk[20:22])),
IP: bittorrent.IP{IP: net.IP(pk[22:])}}
if ip := peer.IP.To4(); ip != nil {
peer.IP.IP = ip
peer.IP.AddressFamily = bittorrent.IPv4
} else if len(peer.IP.IP) == net.IPv6len { // implies toReturn.IP.To4() == nil
peer.IP.AddressFamily = bittorrent.IPv6
} else {
panic("IP is neither v4 nor v6")
}
return peer
}
func (ps *peerStore) PutSeeder(ih bittorrent.InfoHash, p bittorrent.Peer) error {
select {
case <-ps.closing:
panic("attempted to interact with stopped memory store")
default:
}
pk := newPeerKey(p)
shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)]
shard.Lock()
if _, ok := shard.swarms[ih]; !ok {
shard.swarms[ih] = swarm{
seeders: make(map[serializedPeer]int64),
leechers: make(map[serializedPeer]int64),
}
}
if _, ok := shard.swarms[ih].seeders[pk]; !ok {
// new peer
shard.numSeeders++
}
shard.swarms[ih].seeders[pk] = ps.getClock()
shard.Unlock()
return nil
}
func (ps *peerStore) DeleteSeeder(ih bittorrent.InfoHash, p bittorrent.Peer) error {
select {
case <-ps.closing:
panic("attempted to interact with stopped memory store")
default:
}
pk := newPeerKey(p)
shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)]
shard.Lock()
if _, ok := shard.swarms[ih]; !ok {
shard.Unlock()
return storage.ErrResourceDoesNotExist
}
if _, ok := shard.swarms[ih].seeders[pk]; !ok {
shard.Unlock()
return storage.ErrResourceDoesNotExist
}
if _, ok := shard.swarms[ih].seeders[pk]; ok {
// seeder actually removed
shard.numSeeders--
delete(shard.swarms[ih].seeders, pk)
}
if len(shard.swarms[ih].seeders)|len(shard.swarms[ih].leechers) == 0 {
delete(shard.swarms, ih)
}
shard.Unlock()
return nil
}
func (ps *peerStore) PutLeecher(ih bittorrent.InfoHash, p bittorrent.Peer) error {
select {
case <-ps.closing:
panic("attempted to interact with stopped memory store")
default:
}
pk := newPeerKey(p)
shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)]
shard.Lock()
if _, ok := shard.swarms[ih]; !ok {
shard.swarms[ih] = swarm{
seeders: make(map[serializedPeer]int64),
leechers: make(map[serializedPeer]int64),
}
}
if _, ok := shard.swarms[ih].leechers[pk]; !ok {
// new leecher
shard.numLeechers++
}
shard.swarms[ih].leechers[pk] = ps.getClock()
shard.Unlock()
return nil
}
func (ps *peerStore) DeleteLeecher(ih bittorrent.InfoHash, p bittorrent.Peer) error {
select {
case <-ps.closing:
panic("attempted to interact with stopped memory store")
default:
}
pk := newPeerKey(p)
shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)]
shard.Lock()
if _, ok := shard.swarms[ih]; !ok {
shard.Unlock()
return storage.ErrResourceDoesNotExist
}
if _, ok := shard.swarms[ih].leechers[pk]; !ok {
shard.Unlock()
return storage.ErrResourceDoesNotExist
}
if _, ok := shard.swarms[ih].leechers[pk]; ok {
// leecher actually removed
shard.numLeechers--
delete(shard.swarms[ih].leechers, pk)
}
if len(shard.swarms[ih].seeders)|len(shard.swarms[ih].leechers) == 0 {
delete(shard.swarms, ih)
}
shard.Unlock()
return nil
}
func (ps *peerStore) GraduateLeecher(ih bittorrent.InfoHash, p bittorrent.Peer) error {
select {
case <-ps.closing:
panic("attempted to interact with stopped memory store")
default:
}
pk := newPeerKey(p)
shard := ps.shards[ps.shardIndex(ih, p.IP.AddressFamily)]
shard.Lock()
if _, ok := shard.swarms[ih]; !ok {
shard.swarms[ih] = swarm{
seeders: make(map[serializedPeer]int64),
leechers: make(map[serializedPeer]int64),
}
}
if _, ok := shard.swarms[ih].leechers[pk]; ok {
// leecher actually removed
shard.numLeechers--
delete(shard.swarms[ih].leechers, pk)
}
if _, ok := shard.swarms[ih].seeders[pk]; !ok {
// new seeder
shard.numSeeders++
}
shard.swarms[ih].seeders[pk] = ps.getClock()
shard.Unlock()
return nil
}
func (ps *peerStore) AnnouncePeers(ih bittorrent.InfoHash, seeder bool, numWant int, announcer bittorrent.Peer) (peers []bittorrent.Peer, err error) {
select {
case <-ps.closing:
panic("attempted to interact with stopped memory store")
default:
}
shard := ps.shards[ps.shardIndex(ih, announcer.IP.AddressFamily)]
shard.RLock()
if _, ok := shard.swarms[ih]; !ok {
shard.RUnlock()
return nil, storage.ErrResourceDoesNotExist
}
if seeder {
// Append leechers as possible.
leechers := shard.swarms[ih].leechers
for p := range leechers {
decodedPeer := decodePeerKey(p)
if numWant == 0 {
break
}
peers = append(peers, decodedPeer)
numWant--
}
} else {
// Append as many seeders as possible.
seeders := shard.swarms[ih].seeders
for p := range seeders {
decodedPeer := decodePeerKey(p)
if numWant == 0 {
break
}
peers = append(peers, decodedPeer)
numWant--
}
// Append leechers until we reach numWant.
leechers := shard.swarms[ih].leechers
if numWant > 0 {
for p := range leechers {
decodedPeer := decodePeerKey(p)
if numWant == 0 {
break
}
if decodedPeer.Equal(announcer) {
continue
}
peers = append(peers, decodedPeer)
numWant--
}
}
}
shard.RUnlock()
return
}
func (ps *peerStore) ScrapeSwarm(ih bittorrent.InfoHash, addressFamily bittorrent.AddressFamily) (resp bittorrent.Scrape) {
select {
case <-ps.closing:
panic("attempted to interact with stopped memory store")
default:
}
resp.InfoHash = ih
shard := ps.shards[ps.shardIndex(ih, addressFamily)]
shard.RLock()
if _, ok := shard.swarms[ih]; !ok {
shard.RUnlock()
return
}
resp.Incomplete = uint32(len(shard.swarms[ih].leechers))
resp.Complete = uint32(len(shard.swarms[ih].seeders))
shard.RUnlock()
return
}
// collectGarbage deletes all Peers from the PeerStore which are older than the
// cutoff time.
//
// This function must be able to execute while other methods on this interface
// are being executed in parallel.
func (ps *peerStore) collectGarbage(cutoff time.Time) error {
select {
case <-ps.closing:
panic("attempted to interact with stopped memory store")
default:
}
cutoffUnix := cutoff.UnixNano()
start := time.Now()
for _, shard := range ps.shards {
shard.RLock()
var infohashes []bittorrent.InfoHash
for ih := range shard.swarms {
infohashes = append(infohashes, ih)
}
shard.RUnlock()
runtime.Gosched()
for _, ih := range infohashes {
shard.Lock()
if _, stillExists := shard.swarms[ih]; !stillExists {
shard.Unlock()
runtime.Gosched()
continue
}
for pk, mtime := range shard.swarms[ih].leechers {
if mtime <= cutoffUnix {
delete(shard.swarms[ih].leechers, pk)
shard.numLeechers--
}
}
for pk, mtime := range shard.swarms[ih].seeders {
if mtime <= cutoffUnix {
delete(shard.swarms[ih].seeders, pk)
shard.numSeeders--
}
}
if len(shard.swarms[ih].seeders)|len(shard.swarms[ih].leechers) == 0 {
delete(shard.swarms, ih)
}
shard.Unlock()
runtime.Gosched()
}
runtime.Gosched()
}
recordGCDuration(time.Since(start))
return nil
}
func (ps *peerStore) Stop() <-chan error {
c := make(chan error)
go func() {
close(ps.closing)
ps.wg.Wait()
// Explicitly deallocate our storage.
shards := make([]*peerShard, len(ps.shards))
for i := 0; i < len(ps.shards); i++ {
shards[i] = &peerShard{swarms: make(map[bittorrent.InfoHash]swarm)}
}
ps.shards = shards
close(c)
}()
return c
}