wallet-sync-server/test_client/test_client.py
2022-07-22 16:37:27 -04:00

605 lines
22 KiB
Python
Executable file

#!/bin/python3
from collections import namedtuple
import base64, json, uuid, requests, hashlib, hmac
from pprint import pprint
from hashlib import scrypt, sha256 # TODO - audit! Should I use hazmat `Scrypt` instead for some reason?
import secrets
WalletState = namedtuple('WalletState', ['sequence', 'encrypted_wallet'])
class LBRYSDK():
# TODO - error checking
@staticmethod
def get_wallet(wallet_id, password):
response = requests.post('http://localhost:5279', json.dumps({
"method": "sync_apply",
"params": {
"password": password,
"wallet_id": wallet_id,
},
}))
return response.json()['result']['data']
@staticmethod
def get_hash(wallet_id):
response = requests.post('http://localhost:5279', json.dumps({
"method": "sync_hash",
"params": {
"wallet_id": wallet_id,
},
}))
return response.json()['result']
# TODO - error checking
@staticmethod
def update_wallet(wallet_id, password, data):
response = requests.post('http://localhost:5279', json.dumps({
"method": "sync_apply",
"params": {
"data": data,
"password": password,
"wallet_id": wallet_id,
},
}))
return response.json()['result']['data']
# TODO - error checking
@staticmethod
def set_preference(wallet_id, key, value):
response = requests.post('http://localhost:5279', json.dumps({
"method": "preference_set",
"params": {
"key": key,
"value": value,
"wallet_id": wallet_id,
},
}))
return response.json()['result']
# TODO - error checking
@staticmethod
def get_preferences(wallet_id):
response = requests.post('http://localhost:5279', json.dumps({
"method": "preference_get",
"params": {
"wallet_id": wallet_id,
},
}))
return response.json()['result']
class WalletSync():
def __init__(self, local):
self.API_VERSION = 3
if local:
BASE_URL = 'http://localhost:8090'
else:
BASE_URL = 'https://dev.lbry.id:8091'
# Avoid confusion. I sometimes forget, at any rate.
print ("Connecting to Wallet API at " + BASE_URL)
API_URL = BASE_URL + '/api/%d' % self.API_VERSION
self.AUTH_URL = API_URL + '/auth/full'
self.REGISTER_URL = API_URL + '/signup'
self.PASSWORD_URL = API_URL + '/password'
self.WALLET_URL = API_URL + '/wallet'
self.CLIENT_SALT_SEED_URL = API_URL + '/client-salt-seed'
def register(self, email, password, salt_seed):
body = json.dumps({
'email': email,
'password': password,
'clientSaltSeed': salt_seed,
})
response = requests.post(self.REGISTER_URL, body)
if response.status_code != 201:
print ('Error', response.status_code)
print (response.content)
return False
return True
def get_auth_token(self, email, password, device_id):
body = json.dumps({
'email': email,
'password': password,
'deviceId': device_id,
})
response = requests.post(self.AUTH_URL, body)
if response.status_code != 200:
print ('Error', response.status_code)
print (response.content)
return None
return response.json()['token']
def get_salt_seed(self, email):
params = {
'email': base64.encodestring(bytes(email.encode('utf-8'))),
}
response = requests.get(self.CLIENT_SALT_SEED_URL, params=params)
if response.status_code == 404:
print ('Account not found')
raise Exception("Account not found")
if response.status_code != 200:
print ('Error', response.status_code)
print (response.content)
raise Exception("Unexpected status code")
return response.json()['clientSaltSeed']
def get_wallet(self, token):
params = {
'token': token,
}
response = requests.get(self.WALLET_URL, params=params)
if response.status_code == 404:
print ('Wallet not found')
# "No wallet" is not an error, so no exception raised
return None, None
if response.status_code != 200:
print ('Error', response.status_code)
print (response.content)
raise Exception("Unexpected status code")
wallet_state = WalletState(
encrypted_wallet=response.json()['encryptedWallet'],
sequence=response.json()['sequence'],
)
hmac = response.json()['hmac']
return wallet_state, hmac
def update_wallet(self, wallet_state, hmac, token):
body = json.dumps({
"token": token,
"encryptedWallet": wallet_state.encrypted_wallet,
"sequence": wallet_state.sequence,
"hmac": hmac,
})
response = requests.post(self.WALLET_URL, body)
if response.status_code == 200:
print ('Successfully updated wallet state on server')
return True
elif response.status_code == 409:
print ('Submitted wallet is out of date.')
return False
else:
print ('Error', response.status_code)
print (response.content)
raise Exception("Unexpected status code")
def change_password_with_wallet(self, wallet_state, hmac, email, old_password, new_password, salt_seed):
body = json.dumps({
"encryptedWallet": wallet_state.encrypted_wallet,
"sequence": wallet_state.sequence,
"hmac": hmac,
"email": email,
"oldPassword": old_password,
"newPassword": new_password,
'clientSaltSeed': salt_seed,
})
response = requests.post(self.PASSWORD_URL, body)
if response.status_code == 200:
print ('Successfully updated password and wallet state on server')
return True
elif response.status_code == 409:
print ('Either submitted wallet is out of date, or there was no wallet on the server to update in the first place.')
return False
else:
print ('Error', response.status_code)
print (response.content)
raise Exception("Unexpected status code")
def change_password_no_wallet(self, email, old_password, new_password, salt_seed):
body = json.dumps({
"email": email,
"oldPassword": old_password,
"newPassword": new_password,
'clientSaltSeed': salt_seed,
})
response = requests.post(self.PASSWORD_URL, body)
if response.status_code == 200:
print ('Successfully updated password on server')
return True
elif response.status_code == 409:
print ('There is a wallet on the server that needs to be updated with password change.')
return False
else:
print ('Error', response.status_code)
print (response.content)
raise Exception("Unexpected status code")
# Thanks to Standard Notes. See:
# https://docs.standardnotes.com/specification/encryption/
# Sized in bytes
SALT_SEED_LENGTH = 32
SALT_LENGTH = 16
def generate_salt_seed():
return secrets.token_hex(SALT_SEED_LENGTH)
def generate_salt(email, seed):
hash_input = (email + ":" + seed).encode('utf-8')
hash_output = sha256(hash_input).hexdigest().encode('utf-8')
return bytes(hash_output[:(SALT_LENGTH * 2)])
def derive_secrets(root_password, email, salt_seed):
# 2017 Scrypt parameters: https://words.filippo.io/the-scrypt-parameters/
#
# There's recommendations for interactive use, and stronger recommendations
# for sensitive storage. Going with the latter since we're storing
# encrypted stuff on a server.
#
# Auditors double check.
scrypt_n = 1<<20
scrypt_r = 8
scrypt_p = 1
key_length = 32
num_keys = 3
salt = generate_salt(email, salt_seed)
print ("Generating keys...")
kdf_output = scrypt(
bytes(root_password, 'utf-8'),
salt=salt,
dklen=key_length * num_keys,
n=scrypt_n,
r=scrypt_r,
p=scrypt_p,
maxmem=1100000000, # TODO - is this a lot?
)
print ("Done generating keys")
# Split the output in three
parts = (
kdf_output[:key_length],
kdf_output[key_length:key_length * 2],
kdf_output[key_length * 2:],
)
lbry_id_password = base64.b64encode(parts[0]).decode('utf-8')
sync_password = base64.b64encode(parts[1]).decode('utf-8')
hmac_key = parts[2]
return lbry_id_password, sync_password, hmac_key
def create_hmac(wallet_state, hmac_key):
input_str = str(wallet_state.sequence) + ':' + wallet_state.encrypted_wallet
return hmac.new(hmac_key, input_str.encode('utf-8'), hashlib.sha256 ).hexdigest()
def check_hmac(wallet_state, hmac_key, hmac):
return hmac == create_hmac(wallet_state, hmac_key)
class Client():
# If you want to get the lastSynced stuff back, see:
# 512ebe3e95bf4e533562710a7f91c59616a9a197
# It's mostly simple, but the _validate_new_wallet_state changes may be worth
# looking at.
def _validate_new_wallet_state(self, new_wallet_state):
if self.synced_wallet_state is None:
# All of the validations here are in reference to what the device already
# has. If this device is getting a wallet state for the first time, there
# is no basis for comparison.
return True
# Make sure that the new sequence is overall later.
if new_wallet_state.sequence <= self.synced_wallet_state.sequence:
return False
return True
def __init__(self, email, root_password, wallet_id='default_wallet', local=False):
self.wallet_sync_api = WalletSync(local=local)
# Represents normal client behavior (though a real client will of course save device id)
self.device_id = str(uuid.uuid4())
self.auth_token = 'bad token'
self.synced_wallet_state = None
self.email = email
self.root_password = root_password
self.wallet_id = wallet_id
def register(self):
# Note that for each registration, i.e. for each domain, we generate a
# different salt seed.
#
# Auditor - Does changing salt seed here cover the threat of sync servers
# guessing the password of the same user on another sync server? It should
# be a new seed if it's a new server.
self.salt_seed = generate_salt_seed()
self.lbry_id_password, self.sync_password, self.hmac_key = derive_secrets(
self.root_password, self.email, self.salt_seed)
success = self.wallet_sync_api.register(
self.email,
self.lbry_id_password,
self.salt_seed
)
if success:
print ("Registered")
def set_local_password(self, root_password):
"""
For clients to catch up to another client that just changed the password.
"""
# TODO - is UTF-8 appropriate for root_password? based on characters used etc.
self.root_password = root_password
self.update_secrets()
def update_secrets(self):
"""
For clients other than the one that most recently registered or changed the
password, use this to get the salt seed from the server and generate keys
locally.
"""
self.salt_seed = self.wallet_sync_api.get_salt_seed(self.email)
self.lbry_id_password, self.sync_password, self.hmac_key = derive_secrets(
self.root_password, self.email, self.salt_seed)
# TODO - This does not deal with the question of tying accounts to wallets.
# Does a new wallet state mean a we're creating a new account? What happens
# if we create a new wallet state tied to an existing account? Do we merge it
# with what's on the server anyway? Do we refuse to merge, or warn the user?
# Etc. This sort of depends on how the LBRY Desktop/SDK usually behave. For
# now, it'll end up just merging any un-saved local changes with whatever is
# on the server.
# TODO - Later, we should be saving the synced_wallet_state to disk, or
# something like that, so we know whether there are unpushed changes on
# startup (which should be uncommon but possible if crash or network problem
# in previous run). This will be important when the client is responsible for
# merging what comes from the server with those local unpushed changes. For
# now, the SDK handles merges with timestamps and such so it's as safe as
# always to just merge in.
# TODO - Save wallet state to disk, and init by pulling from disk. That way,
# we'll know what the merge base is, and we won't have to merge from 0 each
# time the app restarts.
# TODO - Wrap this back into __init__, now that I got the empty encrypted
# wallet right.
def init_wallet_state(self):
# Represents what's been synced to the wallet sync server. It starts with
# sequence=0 which means nothing has been synced yet. As such, we start
# with an empty encrypted_wallet here. Anything currently in the SDK is a
# local-only change until it's pushed. If there's a merge conflict,
# sequence=0, empty encrypted_wallet will be the merge base. That way we
# won't lose any changes.
self.synced_wallet_state = WalletState(
sequence=0,
# TODO - This should be the encrypted form of the empty wallet. The very
# first baseline, which could be used for merges in weird cases where
# users make conflicting changes on two different clients before ever
# pushing to the sync server.
encrypted_wallet="",
)
# Initialize to the hash of the empty wallet. This way we will know if any
# changes to the wallet exist that haven't been pushed yet, even if the
# changes were made before the wallet state was initialized.
# TODO - actually set the right hash
self.mark_local_changes_synced_to_empty()
def get_auth_token(self):
token = self.wallet_sync_api.get_auth_token(
self.email,
self.lbry_id_password,
self.device_id,
)
if not token:
return
self.auth_token = token
print ("Got auth token: ", self.auth_token)
# TODO - What about cases where we are managing multiple different wallets?
# Some will have lower sequences. If you accidentally mix it up client-side,
# you might end up overwriting one wallet with another if the former has a
# higher sequence number. Maybe we want to annotate them with which account
# we're talking about. Again, we should see how LBRY Desktop/SDK deal with
# it.
def get_merged_wallet_state(self, new_wallet_state):
# Eventually, we will look for local changes in
# `get_local_encrypted_wallet()` by comparing it to
# `self.synced_wallet_state.encrypted_wallet`.
#
# If there are no local changes, we can just return `new_wallet_state`.
#
# If there are local changes, we will merge between `new_wallet_state` and
# `get_local_encrypted_wallet()`, using
# `self.synced_wallet_state.encrypted_wallet` as our merge base.
#
# For really hairy cases, this could even be a whole interactive process,
# not just a function.
# For now, the SDK handles merging (in a way that we hope to improve with
# the above eventually) so we will just return `new_wallet_state`. However,
# since we can at least compare hashes, we'll leave a little note for the
# user indicating that we're doing a merge. Caveat: We can't do it on
# sequence=0 because we can't get a sense of whether changes were made on a
# client before the first sync.
if self.synced_wallet_state.sequence > 0:
if self.has_unsynced_local_changes():
print ("Merging local changes with remote changes to create latest walletState.")
else:
print ("Nothing to merge. Taking remote walletState as latest walletState.")
return new_wallet_state
# Returns: status
def get_remote_wallet(self):
# TODO - Do try/catch for other calls I guess. I needed it here in
# particular for the README
try:
new_wallet_state, hmac = self.wallet_sync_api.get_wallet(self.auth_token)
except Exception:
return "Failed to get remote wallet"
if not new_wallet_state:
# Wallet not found, but this is not an error
return "Not Found"
if not check_hmac(new_wallet_state, self.hmac_key, hmac):
print ('Error - bad hmac on new wallet')
print (new_wallet_state, hmac)
return "Error"
if self.synced_wallet_state != new_wallet_state and not self._validate_new_wallet_state(new_wallet_state):
print ('Error - new wallet does not validate')
print ('current:', self.synced_wallet_state)
print ('got:', new_wallet_state)
return "Error"
merged_wallet_state = self.get_merged_wallet_state(new_wallet_state)
# TODO error recovery between these two steps? sequence of events?
# This isn't gonna be quite right. Look at state diagrams.
self.synced_wallet_state = merged_wallet_state
self.update_local_encrypted_wallet(merged_wallet_state.encrypted_wallet)
# We just took the value from the sync server, so local changes are synced
self.mark_local_changes_synced()
print ("Got latest walletState:")
pprint(self.synced_wallet_state)
return "Success"
# Returns: status
def update_remote_wallet(self):
# Create a *new* wallet state, with the updated sequence, and include our
# local encrypted wallet changes. Don't set self.synced_wallet_state to
# this until we know that it's accepted by the server.
if not self.synced_wallet_state:
print ("No wallet state to post.")
return "Error"
submitted_wallet_state = WalletState(
encrypted_wallet=self.get_local_encrypted_wallet(self.sync_password),
sequence=self.synced_wallet_state.sequence + 1
)
hmac = create_hmac(submitted_wallet_state, self.hmac_key)
# Submit our wallet.
updated = self.wallet_sync_api.update_wallet(submitted_wallet_state, hmac, self.auth_token)
if updated:
# We updated it. Now it's synced and we mark it as such.
self.synced_wallet_state = submitted_wallet_state
# We just pushed our local changes to the server, so local changes are synced
self.mark_local_changes_synced()
print ("Synced walletState:")
pprint(self.synced_wallet_state)
return "Success"
print ("Could not update. Need to get new wallet and merge")
return "Failure"
# Returns: status
def change_password(self, new_root_password):
# Change the password on the server. If a wallet exists on the server,
# update that as well so that the sync password and hmac key are derived
# from the same root password as the lbry id password.
# Auditor - Should we be generating a *new* seed for every password change?
self.salt_seed = generate_salt_seed()
new_lbry_id_password, new_sync_password, new_hmac_key = derive_secrets(
new_root_password, self.email, self.salt_seed)
# TODO - Think of failure sequence in case of who knows what. We
# could just get the old salt seed back from the server?
# We can't lose it though. Keep the old one around? Kinda sucks.
if self.synced_wallet_state and self.synced_wallet_state.sequence > 0:
# Don't allow it to change if we have local changes to push. This
# precludes the possibility of having a conflict with remote changes,
# followed by a merge with user interaction, when the user is already in
# the middle of a password change. This way, if there is a conflict, we
# can simply get the latest wallet and try again with the same password
# that the user just entered, guaranteeing that they won't need to do any
# more interactions.
#
# NOTE: If for whatever reason this is removed, make sure to add a call
# to mark_local_changes_synced as appropriate below, since we may be
# going from unsynced to synced.
if self.has_unsynced_local_changes():
print("Local changes found. Update remote wallet before changing password.")
return "Failure"
# Create a *new* wallet state (with our new sync password), with the
# updated sequence, and include our local encrypted wallet changes.
# Don't set self.synced_wallet_state to this until we know that it's
# accepted by the server.
submitted_wallet_state = WalletState(
encrypted_wallet=self.get_local_encrypted_wallet(new_sync_password),
sequence=self.synced_wallet_state.sequence + 1
)
hmac = create_hmac(submitted_wallet_state, new_hmac_key)
# Update our password and submit our wallet.
updated = self.wallet_sync_api.change_password_with_wallet(submitted_wallet_state, hmac, self.email, self.lbry_id_password, new_lbry_id_password, self.salt_seed)
if updated:
# We updated it. Now it's synced and we mark it as such. Update everything in one command to keep local changes in sync!
self.synced_wallet_state, self.lbry_id_password, self.sync_password, self.hmac_key = (
submitted_wallet_state, new_lbry_id_password, new_sync_password, new_hmac_key)
print ("Synced walletState:")
pprint(self.synced_wallet_state)
return "Success"
else:
# Update our password.
updated = self.wallet_sync_api.change_password_no_wallet(self.email, self.lbry_id_password, new_lbry_id_password, self.salt_seed)
if updated:
# We updated it. Now we mark it as such. Update everything in one command to keep local changes in sync!
self.lbry_id_password, self.sync_password, self.hmac_key = (
new_lbry_id_password, new_sync_password, new_hmac_key)
return "Success"
print ("Could not update wallet and password. Perhaps need to get new wallet and merge, perhaps something else.")
return "Failure"
def set_preference(self, key, value):
# TODO - error checking
return LBRYSDK.set_preference(self.wallet_id, key, value)
def get_preferences(self):
# TODO - error checking
return LBRYSDK.get_preferences(self.wallet_id)
def has_unsynced_local_changes(self):
return self.lbry_sdk_last_synced_hash != LBRYSDK.get_hash(self.wallet_id)
def mark_local_changes_synced(self):
self.lbry_sdk_last_synced_hash = LBRYSDK.get_hash(self.wallet_id)
def mark_local_changes_synced_to_empty(self):
# TODO - this should be the hash of the empty wallet. See
# comment in init_wallet_state().
self.lbry_sdk_last_synced_hash = ""
def update_local_encrypted_wallet(self, encrypted_wallet):
# TODO - error checking
return LBRYSDK.update_wallet(self.wallet_id, self.sync_password, encrypted_wallet)
def get_local_encrypted_wallet(self, sync_password):
# TODO - error checking
return LBRYSDK.get_wallet(self.wallet_id, sync_password)