145 lines
6 KiB
Python
145 lines
6 KiB
Python
|
import argparse
|
||
|
import torch
|
||
|
import os
|
||
|
import json
|
||
|
from tqdm import tqdm
|
||
|
import shortuuid
|
||
|
|
||
|
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
||
|
from llava.conversation import conv_templates, SeparatorStyle
|
||
|
from llava.model.builder import load_pretrained_model
|
||
|
from llava.utils import disable_torch_init
|
||
|
from llava.mm_utils import tokenizer_image_token, process_images, get_model_name_from_path
|
||
|
from torch.utils.data import Dataset, DataLoader
|
||
|
|
||
|
from PIL import Image
|
||
|
import math
|
||
|
|
||
|
|
||
|
def split_list(lst, n):
|
||
|
"""Split a list into n (roughly) equal-sized chunks"""
|
||
|
chunk_size = math.ceil(len(lst) / n) # integer division
|
||
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
||
|
|
||
|
|
||
|
def get_chunk(lst, n, k):
|
||
|
chunks = split_list(lst, n)
|
||
|
return chunks[k]
|
||
|
|
||
|
|
||
|
# Custom dataset class
|
||
|
class CustomDataset(Dataset):
|
||
|
def __init__(self, questions, image_folder, tokenizer, image_processor, model_config):
|
||
|
self.questions = questions
|
||
|
self.image_folder = image_folder
|
||
|
self.tokenizer = tokenizer
|
||
|
self.image_processor = image_processor
|
||
|
self.model_config = model_config
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
line = self.questions[index]
|
||
|
image_file = line["image"]
|
||
|
qs = line["text"]
|
||
|
if self.model_config.mm_use_im_start_end:
|
||
|
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
||
|
else:
|
||
|
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
||
|
|
||
|
conv = conv_templates[args.conv_mode].copy()
|
||
|
conv.append_message(conv.roles[0], qs)
|
||
|
conv.append_message(conv.roles[1], None)
|
||
|
prompt = conv.get_prompt()
|
||
|
|
||
|
image = Image.open(os.path.join(self.image_folder, image_file)).convert('RGB')
|
||
|
image_tensor = process_images([image], self.image_processor, self.model_config)[0]
|
||
|
|
||
|
input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt')
|
||
|
|
||
|
return input_ids, image_tensor
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.questions)
|
||
|
|
||
|
|
||
|
# DataLoader
|
||
|
def create_data_loader(questions, image_folder, tokenizer, image_processor, model_config, batch_size=1, num_workers=4):
|
||
|
assert batch_size == 1, "batch_size must be 1"
|
||
|
dataset = CustomDataset(questions, image_folder, tokenizer, image_processor, model_config)
|
||
|
data_loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False)
|
||
|
return data_loader
|
||
|
|
||
|
|
||
|
def eval_model(args):
|
||
|
# Model
|
||
|
disable_torch_init()
|
||
|
model_path = os.path.expanduser(args.model_path)
|
||
|
model_name = get_model_name_from_path(model_path)
|
||
|
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name)
|
||
|
|
||
|
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
||
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
||
|
answers_file = os.path.expanduser(args.answers_file)
|
||
|
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
||
|
ans_file = open(answers_file, "w")
|
||
|
|
||
|
if 'plain' in model_name and 'finetune' not in model_name.lower() and 'mmtag' not in args.conv_mode:
|
||
|
args.conv_mode = args.conv_mode + '_mmtag'
|
||
|
print(f'It seems that this is a plain model, but it is not using a mmtag prompt, auto switching to {args.conv_mode}.')
|
||
|
|
||
|
data_loader = create_data_loader(questions, args.image_folder, tokenizer, image_processor, model.config)
|
||
|
|
||
|
for (input_ids, image_tensor), line in tqdm(zip(data_loader, questions), total=len(questions)):
|
||
|
idx = line["question_id"]
|
||
|
cur_prompt = line["text"]
|
||
|
|
||
|
stop_str = conv_templates[args.conv_mode].sep if conv_templates[args.conv_mode].sep_style != SeparatorStyle.TWO else conv_templates[args.conv_mode].sep2
|
||
|
input_ids = input_ids.to(device='cuda', non_blocking=True)
|
||
|
|
||
|
with torch.inference_mode():
|
||
|
output_ids = model.generate(
|
||
|
input_ids,
|
||
|
images=image_tensor.to(dtype=torch.float16, device='cuda', non_blocking=True),
|
||
|
do_sample=True if args.temperature > 0 else False,
|
||
|
temperature=args.temperature,
|
||
|
top_p=args.top_p,
|
||
|
num_beams=args.num_beams,
|
||
|
max_new_tokens=128,
|
||
|
use_cache=True)
|
||
|
|
||
|
input_token_len = input_ids.shape[1]
|
||
|
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
||
|
if n_diff_input_output > 0:
|
||
|
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
||
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
||
|
outputs = outputs.strip()
|
||
|
if outputs.endswith(stop_str):
|
||
|
outputs = outputs[:-len(stop_str)]
|
||
|
outputs = outputs.strip()
|
||
|
|
||
|
ans_id = shortuuid.uuid()
|
||
|
ans_file.write(json.dumps({"question_id": idx,
|
||
|
"prompt": cur_prompt,
|
||
|
"text": outputs,
|
||
|
"answer_id": ans_id,
|
||
|
"model_id": model_name,
|
||
|
"metadata": {}}) + "\n")
|
||
|
# ans_file.flush()
|
||
|
ans_file.close()
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
|
||
|
parser.add_argument("--model-base", type=str, default=None)
|
||
|
parser.add_argument("--image-folder", type=str, default="")
|
||
|
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
||
|
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
||
|
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
||
|
parser.add_argument("--num-chunks", type=int, default=1)
|
||
|
parser.add_argument("--chunk-idx", type=int, default=0)
|
||
|
parser.add_argument("--temperature", type=float, default=0.2)
|
||
|
parser.add_argument("--top_p", type=float, default=None)
|
||
|
parser.add_argument("--num_beams", type=int, default=1)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
eval_model(args)
|