331 lines
19 KiB
Python
331 lines
19 KiB
Python
|
"""A simple, flexible implementation of a GPT model.
|
||
|
|
||
|
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
||
|
"""
|
||
|
import math
|
||
|
import warnings
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
|
||
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||
|
from .attention import attn_bias_shape, build_attn_bias
|
||
|
from .blocks import MPTBlock
|
||
|
from .custom_embedding import SharedEmbedding
|
||
|
from .norm import NORM_CLASS_REGISTRY
|
||
|
from .configuration_mpt import MPTConfig
|
||
|
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
||
|
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
||
|
from .meta_init_context import init_empty_weights
|
||
|
from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
|
||
|
try:
|
||
|
from .flash_attn_triton import flash_attn_func
|
||
|
except:
|
||
|
pass
|
||
|
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
||
|
|
||
|
class MPTPreTrainedModel(PreTrainedModel):
|
||
|
config_class = MPTConfig
|
||
|
base_model_prefix = 'model'
|
||
|
_no_split_modules = ['MPTBlock']
|
||
|
|
||
|
class MPTModel(MPTPreTrainedModel):
|
||
|
|
||
|
def __init__(self, config: MPTConfig):
|
||
|
config._validate_config()
|
||
|
super().__init__(config)
|
||
|
self.attn_impl = config.attn_config['attn_impl']
|
||
|
self.prefix_lm = config.attn_config['prefix_lm']
|
||
|
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
||
|
self.alibi = config.attn_config['alibi']
|
||
|
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
||
|
if config.init_device == 'mixed':
|
||
|
if dist.get_local_rank() == 0:
|
||
|
config.init_device = 'cpu'
|
||
|
else:
|
||
|
config.init_device = 'meta'
|
||
|
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
||
|
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
||
|
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
||
|
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
||
|
self.embedding_fraction = config.embedding_fraction
|
||
|
self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device)
|
||
|
if not self.alibi:
|
||
|
self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
||
|
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
||
|
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
||
|
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
||
|
if config.init_device != 'meta':
|
||
|
print(f'You are using config.init_device={config.init_device!r}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.')
|
||
|
self.apply(self.param_init_fn)
|
||
|
self.is_causal = not self.prefix_lm
|
||
|
self._attn_bias_initialized = False
|
||
|
self.attn_bias = None
|
||
|
self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
|
||
|
if config.no_bias:
|
||
|
for module in self.modules():
|
||
|
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
||
|
if config.verbose:
|
||
|
warnings.warn(f'Removing bias ({module.bias}) from {module}.')
|
||
|
module.register_parameter('bias', None)
|
||
|
if config.verbose and config.verbose > 2:
|
||
|
print(self)
|
||
|
if 'verbose' not in self.config.init_config:
|
||
|
self.config.init_config['verbose'] = self.config.verbose
|
||
|
if self.config.init_config['verbose'] > 1:
|
||
|
init_fn_name = self.config.init_config['name']
|
||
|
warnings.warn(f'Using {init_fn_name} initialization.')
|
||
|
self.gradient_checkpointing = False
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.wte
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.wte = value
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
|
||
|
if not self._attn_bias_initialized:
|
||
|
if self.attn_bias_shape:
|
||
|
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
||
|
self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
|
||
|
self._attn_bias_initialized = True
|
||
|
if self.attn_impl == 'flash':
|
||
|
return (self.attn_bias, attention_mask)
|
||
|
if self.attn_bias is not None:
|
||
|
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
|
||
|
attn_bias = self.attn_bias
|
||
|
if self.prefix_lm:
|
||
|
assert isinstance(attn_bias, torch.Tensor)
|
||
|
assert isinstance(prefix_mask, torch.Tensor)
|
||
|
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
|
||
|
if self.attn_uses_sequence_id and sequence_id is not None:
|
||
|
assert isinstance(attn_bias, torch.Tensor)
|
||
|
attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
|
||
|
if attention_mask is not None:
|
||
|
s_k = attention_mask.shape[-1]
|
||
|
if attn_bias is None:
|
||
|
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
||
|
else:
|
||
|
_s_k = max(0, attn_bias.size(-1) - s_k)
|
||
|
attn_bias = attn_bias[:, :, :, _s_k:]
|
||
|
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
|
||
|
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
||
|
min_val = torch.finfo(attn_bias.dtype).min
|
||
|
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
|
||
|
return (attn_bias, None)
|
||
|
|
||
|
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
|
||
|
(s_k, s_q) = attn_bias.shape[-2:]
|
||
|
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
||
|
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
||
|
seq_len = prefix_mask.shape[-1]
|
||
|
if seq_len > self.config.max_seq_len:
|
||
|
raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
||
|
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
||
|
causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
|
||
|
prefix = prefix_mask.view(-1, 1, 1, seq_len)
|
||
|
cannot_attend = ~torch.logical_or(causal, prefix.bool())
|
||
|
min_val = torch.finfo(attn_bias.dtype).min
|
||
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
||
|
return attn_bias
|
||
|
|
||
|
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
|
||
|
seq_len = sequence_id.shape[-1]
|
||
|
if seq_len > self.config.max_seq_len:
|
||
|
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
||
|
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
||
|
cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
|
||
|
min_val = torch.finfo(attn_bias.dtype).min
|
||
|
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
||
|
return attn_bias
|
||
|
|
||
|
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None):
|
||
|
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
if attention_mask is not None:
|
||
|
attention_mask = attention_mask.bool()
|
||
|
if prefix_mask is not None:
|
||
|
prefix_mask = prefix_mask.bool()
|
||
|
if not return_dict:
|
||
|
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
||
|
if output_attentions:
|
||
|
if self.attn_impl != 'torch':
|
||
|
raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.')
|
||
|
if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
|
||
|
raise NotImplementedError('MPT does not support training with left padding.')
|
||
|
if self.prefix_lm and prefix_mask is None:
|
||
|
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
||
|
if self.training:
|
||
|
if self.attn_uses_sequence_id and sequence_id is None:
|
||
|
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
||
|
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
||
|
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
||
|
if input_ids is not None:
|
||
|
S = input_ids.size(1)
|
||
|
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
||
|
tok_emb = self.wte(input_ids)
|
||
|
else:
|
||
|
assert inputs_embeds is not None
|
||
|
assert self.alibi, 'inputs_embeds is not implemented for MPT unless for alibi.'
|
||
|
S = inputs_embeds.size(1)
|
||
|
tok_emb = inputs_embeds
|
||
|
if self.alibi:
|
||
|
x = tok_emb
|
||
|
else:
|
||
|
past_position = 0
|
||
|
if past_key_values is not None:
|
||
|
if len(past_key_values) != self.config.n_layers:
|
||
|
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
||
|
past_position = past_key_values[0][0].size(1)
|
||
|
if self.attn_impl == 'torch':
|
||
|
past_position = past_key_values[0][0].size(3)
|
||
|
if S + past_position > self.config.max_seq_len:
|
||
|
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
||
|
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
||
|
if attention_mask is not None:
|
||
|
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
||
|
pos_emb = self.wpe(pos)
|
||
|
x = tok_emb + pos_emb
|
||
|
if self.embedding_fraction == 1:
|
||
|
x = self.emb_drop(x)
|
||
|
else:
|
||
|
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
||
|
assert isinstance(self.emb_drop, nn.Module)
|
||
|
x = self.emb_drop(x_shrunk)
|
||
|
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
||
|
if use_cache and past_key_values is None:
|
||
|
past_key_values = [() for _ in range(self.config.n_layers)]
|
||
|
all_hidden_states = () if output_hidden_states else None
|
||
|
all_self_attns = () if output_attentions else None
|
||
|
for (b_idx, block) in enumerate(self.blocks):
|
||
|
if output_hidden_states:
|
||
|
assert all_hidden_states is not None
|
||
|
all_hidden_states = all_hidden_states + (x,)
|
||
|
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
||
|
if self.gradient_checkpointing and self.training:
|
||
|
(x, attn_weights, past_key_value) = torch.utils.checkpoint.checkpoint(block, x, past_key_value, attn_bias, attention_mask, self.is_causal)
|
||
|
else:
|
||
|
(x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
|
||
|
if past_key_values is not None:
|
||
|
past_key_values[b_idx] = past_key_value
|
||
|
if output_attentions:
|
||
|
assert all_self_attns is not None
|
||
|
all_self_attns = all_self_attns + (attn_weights,)
|
||
|
x = self.norm_f(x)
|
||
|
if output_hidden_states:
|
||
|
assert all_hidden_states is not None
|
||
|
all_hidden_states = all_hidden_states + (x,)
|
||
|
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns)
|
||
|
|
||
|
def param_init_fn(self, module):
|
||
|
init_fn_name = self.config.init_config['name']
|
||
|
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
||
|
|
||
|
def fsdp_wrap_fn(self, module):
|
||
|
return isinstance(module, MPTBlock)
|
||
|
|
||
|
def activation_checkpointing_fn(self, module):
|
||
|
return isinstance(module, MPTBlock)
|
||
|
|
||
|
class MPTForCausalLM(MPTPreTrainedModel):
|
||
|
|
||
|
def __init__(self, config: MPTConfig):
|
||
|
super().__init__(config)
|
||
|
if not config.tie_word_embeddings:
|
||
|
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
||
|
print(f'Instantiating an MPTForCausalLM model from {__file__}')
|
||
|
self.transformer = MPTModel(config)
|
||
|
for child in self.transformer.children():
|
||
|
if isinstance(child, torch.nn.ModuleList):
|
||
|
continue
|
||
|
if isinstance(child, torch.nn.Module):
|
||
|
child._fsdp_wrap = True
|
||
|
self.logit_scale = None
|
||
|
if config.logit_scale is not None:
|
||
|
logit_scale = config.logit_scale
|
||
|
if isinstance(logit_scale, str):
|
||
|
if logit_scale == 'inv_sqrt_d_model':
|
||
|
logit_scale = 1 / math.sqrt(config.d_model)
|
||
|
else:
|
||
|
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
||
|
self.logit_scale = logit_scale
|
||
|
|
||
|
def get_input_embeddings(self):
|
||
|
return self.transformer.wte
|
||
|
|
||
|
def set_input_embeddings(self, value):
|
||
|
self.transformer.wte = value
|
||
|
|
||
|
def get_output_embeddings(self):
|
||
|
return self.transformer.wte
|
||
|
|
||
|
def set_output_embeddings(self, new_embeddings):
|
||
|
self.transformer.wte = new_embeddings
|
||
|
|
||
|
def set_decoder(self, decoder):
|
||
|
self.transformer = decoder
|
||
|
|
||
|
def get_decoder(self):
|
||
|
return self.transformer
|
||
|
|
||
|
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None):
|
||
|
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
if inputs_embeds is not None:
|
||
|
raise NotImplementedError('inputs_embeds has to be None (for hf/peft support).')
|
||
|
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
||
|
logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True)
|
||
|
if self.logit_scale is not None:
|
||
|
if self.logit_scale == 0:
|
||
|
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
||
|
logits *= self.logit_scale
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
labels = torch.roll(labels, shifts=-1)
|
||
|
labels[:, -1] = -100
|
||
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
|
||
|
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
||
|
|
||
|
def param_init_fn(self, module):
|
||
|
init_fn_name = self.config.init_config['name']
|
||
|
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
||
|
|
||
|
def fsdp_wrap_fn(self, module):
|
||
|
return isinstance(module, MPTBlock)
|
||
|
|
||
|
def activation_checkpointing_fn(self, module):
|
||
|
return isinstance(module, MPTBlock)
|
||
|
|
||
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
||
|
if inputs_embeds is not None:
|
||
|
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
||
|
attention_mask = kwargs['attention_mask'].bool()
|
||
|
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
||
|
raise NotImplementedError('MPT does not support generation with right padding.')
|
||
|
if self.transformer.attn_uses_sequence_id and self.training:
|
||
|
sequence_id = torch.zeros_like(input_ids[:1])
|
||
|
else:
|
||
|
sequence_id = None
|
||
|
if past_key_values is not None:
|
||
|
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||
|
if self.transformer.prefix_lm:
|
||
|
prefix_mask = torch.ones_like(attention_mask)
|
||
|
if kwargs.get('use_cache') == False:
|
||
|
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
|
||
|
else:
|
||
|
prefix_mask = None
|
||
|
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
|
||
|
|
||
|
@staticmethod
|
||
|
def _reorder_cache(past_key_values, beam_idx):
|
||
|
"""Used by HuggingFace generate when using beam search with kv-caching.
|
||
|
|
||
|
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
||
|
for an example in transformers.
|
||
|
"""
|
||
|
reordered_past = []
|
||
|
for layer_past in past_key_values:
|
||
|
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
|
||
|
return reordered_past
|