114 lines
3.8 KiB
Python
114 lines
3.8 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import re
|
|
import random
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--base-dir', type=str)
|
|
parser.add_argument('--result-file', type=str)
|
|
parser.add_argument('--output-file', type=str)
|
|
parser.add_argument('--output-result', type=str)
|
|
parser.add_argument('--split', type=str, default='test')
|
|
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
|
|
return parser.parse_args()
|
|
|
|
|
|
def convert_caps(results):
|
|
fakecaps = []
|
|
for result in results:
|
|
image_id = result['question_id']
|
|
caption = result['text']
|
|
fakecaps.append({"image_id": int(image_id), "caption": caption})
|
|
return fakecaps
|
|
|
|
|
|
def get_pred_idx(prediction, choices, options):
|
|
"""
|
|
Get the index (e.g. 2) from the prediction (e.g. 'C')
|
|
"""
|
|
if prediction in options[:len(choices)]:
|
|
return options.index(prediction)
|
|
else:
|
|
return -1
|
|
return random.choice(range(len(choices)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = get_args()
|
|
|
|
base_dir = args.base_dir
|
|
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
|
|
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
|
predictions = [json.loads(line) for line in open(args.result_file)]
|
|
predictions = {pred['question_id']: pred for pred in predictions}
|
|
split_problems = {idx: problems[idx] for idx in split_indices}
|
|
|
|
results = {'correct': [], 'incorrect': []}
|
|
sqa_results = {}
|
|
sqa_results['acc'] = None
|
|
sqa_results['correct'] = None
|
|
sqa_results['count'] = None
|
|
sqa_results['results'] = {}
|
|
sqa_results['outputs'] = {}
|
|
|
|
for prob_id, prob in split_problems.items():
|
|
if prob_id not in predictions:
|
|
pred = {'text': 'FAILED', 'prompt': 'Unknown'}
|
|
pred_text = 'FAILED'
|
|
else:
|
|
pred = predictions[prob_id]
|
|
pred_text = pred['text']
|
|
|
|
if pred_text in args.options:
|
|
answer = pred_text
|
|
elif len(pred_text) >= 3 and pred_text[0] in args.options and pred_text[1:3] == ". ":
|
|
answer = pred_text[0]
|
|
else:
|
|
pattern = re.compile(r'The answer is ([A-Z]).')
|
|
res = pattern.findall(pred_text)
|
|
if len(res) == 1:
|
|
answer = res[0] # 'A', 'B', ...
|
|
else:
|
|
answer = "FAILED"
|
|
|
|
pred_idx = get_pred_idx(answer, prob['choices'], args.options)
|
|
|
|
analysis = {
|
|
'question_id': prob_id,
|
|
'parsed_ans': answer,
|
|
'ground_truth': args.options[prob['answer']],
|
|
'question': pred['prompt'],
|
|
'pred': pred_text,
|
|
'is_multimodal': '<image>' in pred['prompt'],
|
|
}
|
|
|
|
sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options)
|
|
sqa_results['outputs'][prob_id] = pred_text
|
|
|
|
if pred_idx == prob['answer']:
|
|
results['correct'].append(analysis)
|
|
else:
|
|
results['incorrect'].append(analysis)
|
|
|
|
correct = len(results['correct'])
|
|
total = len(results['correct']) + len(results['incorrect'])
|
|
|
|
###### IMG ######
|
|
multimodal_correct = len([x for x in results['correct'] if x['is_multimodal']])
|
|
multimodal_incorrect = len([x for x in results['incorrect'] if x['is_multimodal']])
|
|
multimodal_total = multimodal_correct + multimodal_incorrect
|
|
###### IMG ######
|
|
|
|
print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%, IMG-Accuracy: {multimodal_correct / multimodal_total * 100:.2f}%')
|
|
|
|
sqa_results['acc'] = correct / total * 100
|
|
sqa_results['correct'] = correct
|
|
sqa_results['count'] = total
|
|
|
|
with open(args.output_file, 'w') as f:
|
|
json.dump(results, f, indent=2)
|
|
with open(args.output_result, 'w') as f:
|
|
json.dump(sqa_results, f, indent=2)
|