74 lines
2.3 KiB
Python
74 lines
2.3 KiB
Python
"""Generate answers with GPT-3.5"""
|
|
# Note: you need to be using OpenAI Python v0.27.0 for the code below to work
|
|
import argparse
|
|
import json
|
|
import os
|
|
import time
|
|
import concurrent.futures
|
|
|
|
import openai
|
|
import tqdm
|
|
import shortuuid
|
|
|
|
MODEL = 'gpt-3.5-turbo'
|
|
MODEL_ID = 'gpt-3.5-turbo:20230327'
|
|
|
|
def get_answer(question_id: int, question: str, max_tokens: int):
|
|
ans = {
|
|
'answer_id': shortuuid.uuid(),
|
|
'question_id': question_id,
|
|
'model_id': MODEL_ID,
|
|
}
|
|
for _ in range(3):
|
|
try:
|
|
response = openai.ChatCompletion.create(
|
|
model=MODEL,
|
|
messages=[{
|
|
'role': 'system',
|
|
'content': 'You are a helpful assistant.'
|
|
}, {
|
|
'role': 'user',
|
|
'content': question,
|
|
}],
|
|
max_tokens=max_tokens,
|
|
)
|
|
ans['text'] = response['choices'][0]['message']['content']
|
|
return ans
|
|
except Exception as e:
|
|
print('[ERROR]', e)
|
|
ans['text'] = '#ERROR#'
|
|
time.sleep(1)
|
|
return ans
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='ChatGPT answer generation.')
|
|
parser.add_argument('-q', '--question')
|
|
parser.add_argument('-o', '--output')
|
|
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
|
args = parser.parse_args()
|
|
|
|
questions_dict = {}
|
|
with open(os.path.expanduser(args.question)) as f:
|
|
for line in f:
|
|
if not line:
|
|
continue
|
|
q = json.loads(line)
|
|
questions_dict[q['question_id']] = q['text']
|
|
|
|
answers = []
|
|
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=32) as executor:
|
|
futures = []
|
|
for qid, question in questions_dict.items():
|
|
future = executor.submit(get_answer, qid, question, args.max_tokens)
|
|
futures.append(future)
|
|
|
|
for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
|
|
answers.append(future.result())
|
|
|
|
answers.sort(key=lambda x: x['question_id'])
|
|
|
|
with open(os.path.expanduser(args.output), 'w') as f:
|
|
table = [json.dumps(ans) for ans in answers]
|
|
f.write('\n'.join(table))
|