SUPIR/llava/llava_agent.py
2024-01-25 22:42:59 +08:00

107 lines
4.4 KiB
Python

import torch
import os
import json
from tqdm import tqdm
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
import math
import time
import glob as gb
class LLavaAgent:
def __init__(self, model_path, device='cuda', conv_mode='vicuna_v1'):
self.device = device
if torch.device(self.device).index is not None:
device_map = {'model': torch.device(self.device).index, 'lm_head': torch.device(self.device).index}
else:
device_map = 'auto'
model_path = os.path.expanduser(model_path)
model_name = get_model_name_from_path(model_path)
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path, None, model_name, device=self.device, device_map=device_map)
self.model = model
self.image_processor = image_processor
self.tokenizer = tokenizer
self.context_len = context_len
self.qs = 'Describe this image and its style in a very detailed manner.'
self.conv_mode = conv_mode
if self.model.config.mm_use_im_start_end:
self.qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + self.qs
else:
self.qs = DEFAULT_IMAGE_TOKEN + '\n' + self.qs
self.conv = conv_templates[self.conv_mode].copy()
self.conv.append_message(self.conv.roles[0], self.qs)
self.conv.append_message(self.conv.roles[1], None)
prompt = self.conv.get_prompt()
self.input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(
0).to(self.device)
def update_qs(self, qs=None):
if qs is None:
qs = self.qs
else:
if self.model.config.mm_use_im_start_end:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
self.conv = conv_templates[self.conv_mode].copy()
self.conv.append_message(self.conv.roles[0], qs)
self.conv.append_message(self.conv.roles[1], None)
prompt = self.conv.get_prompt()
self.input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(
0).to(self.device)
def gen_image_caption(self, imgs, temperature=0.2, top_p=0.7, num_beams=1, qs=None):
'''
[PIL.Image, ...]
'''
self.update_qs(qs)
bs = len(imgs)
input_ids = self.input_ids.repeat(bs, 1)
img_tensor_list = []
for image in imgs:
_image_tensor = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
img_tensor_list.append(_image_tensor)
image_tensor = torch.stack(img_tensor_list, dim=0).half().to(self.device)
stop_str = self.conv.sep if self.conv.sep_style != SeparatorStyle.TWO else self.conv.sep2
with torch.inference_mode():
output_ids = self.model.generate(
input_ids,
images=image_tensor,
do_sample=True if temperature > 0 else False,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
# no_repeat_ngram_size=3,
max_new_tokens=512,
use_cache=True)
input_token_len = input_ids.shape[1]
outputs = self.tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)
img_captions = []
for output in outputs:
output = output.strip()
if output.endswith(stop_str):
output = output[:-len(stop_str)]
output = output.strip().replace('\n', ' ').replace('\r', ' ')
img_captions.append(output)
return img_captions
if __name__ == '__main__':
llava_agent = LLavaAgent("/opt/data/private/AIGC_pretrain/LLaVA1.5/llava-v1.5-13b")
img = [Image.open('/opt/data/private/LV_Dataset/DiffGLV-Test-All/RealPhoto60/LQ/02.png')]
caption = llava_agent.gen_image_caption(img)