952 lines
36 KiB
Python
952 lines
36 KiB
Python
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
|
|
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
|
|
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import copy
|
|
from dataclasses import dataclass, field
|
|
import json
|
|
import logging
|
|
import pathlib
|
|
from typing import Dict, Optional, Sequence, List
|
|
|
|
import torch
|
|
|
|
import transformers
|
|
|
|
from llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
|
from torch.utils.data import Dataset
|
|
from llava.train.llava_trainer import LLaVATrainer
|
|
|
|
from llava import conversation as conversation_lib
|
|
from llava.model import *
|
|
from llava.mm_utils import tokenizer_image_token
|
|
|
|
from PIL import Image
|
|
|
|
|
|
local_rank = None
|
|
|
|
|
|
def rank0_print(*args):
|
|
if local_rank == 0:
|
|
print(*args)
|
|
|
|
|
|
@dataclass
|
|
class ModelArguments:
|
|
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
|
|
version: Optional[str] = field(default="v0")
|
|
freeze_backbone: bool = field(default=False)
|
|
tune_mm_mlp_adapter: bool = field(default=False)
|
|
vision_tower: Optional[str] = field(default=None)
|
|
mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer
|
|
pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
|
|
mm_projector_type: Optional[str] = field(default='linear')
|
|
mm_use_im_start_end: bool = field(default=False)
|
|
mm_use_im_patch_token: bool = field(default=True)
|
|
mm_vision_select_feature: Optional[str] = field(default="patch")
|
|
|
|
|
|
@dataclass
|
|
class DataArguments:
|
|
data_path: str = field(default=None,
|
|
metadata={"help": "Path to the training data."})
|
|
lazy_preprocess: bool = False
|
|
is_multimodal: bool = False
|
|
image_folder: Optional[str] = field(default=None)
|
|
image_aspect_ratio: str = 'square'
|
|
image_grid_pinpoints: Optional[str] = field(default=None)
|
|
|
|
|
|
@dataclass
|
|
class TrainingArguments(transformers.TrainingArguments):
|
|
cache_dir: Optional[str] = field(default=None)
|
|
optim: str = field(default="adamw_torch")
|
|
remove_unused_columns: bool = field(default=False)
|
|
freeze_mm_mlp_adapter: bool = field(default=False)
|
|
mpt_attn_impl: Optional[str] = field(default="triton")
|
|
model_max_length: int = field(
|
|
default=512,
|
|
metadata={
|
|
"help":
|
|
"Maximum sequence length. Sequences will be right padded (and possibly truncated)."
|
|
},
|
|
)
|
|
double_quant: bool = field(
|
|
default=True,
|
|
metadata={"help": "Compress the quantization statistics through double quantization."}
|
|
)
|
|
quant_type: str = field(
|
|
default="nf4",
|
|
metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
|
|
)
|
|
bits: int = field(
|
|
default=16,
|
|
metadata={"help": "How many bits to use."}
|
|
)
|
|
lora_enable: bool = False
|
|
lora_r: int = 64
|
|
lora_alpha: int = 16
|
|
lora_dropout: float = 0.05
|
|
lora_weight_path: str = ""
|
|
lora_bias: str = "none"
|
|
group_by_modality_length: bool = field(default=False)
|
|
|
|
|
|
def maybe_zero_3(param, ignore_status=False, name=None):
|
|
from deepspeed import zero
|
|
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
|
|
if hasattr(param, "ds_id"):
|
|
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
|
|
if not ignore_status:
|
|
logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}")
|
|
with zero.GatheredParameters([param]):
|
|
param = param.data.detach().cpu().clone()
|
|
else:
|
|
param = param.detach().cpu().clone()
|
|
return param
|
|
|
|
|
|
# Borrowed from peft.utils.get_peft_model_state_dict
|
|
def get_peft_state_maybe_zero_3(named_params, bias):
|
|
if bias == "none":
|
|
to_return = {k: t for k, t in named_params if "lora_" in k}
|
|
elif bias == "all":
|
|
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
|
|
elif bias == "lora_only":
|
|
to_return = {}
|
|
maybe_lora_bias = {}
|
|
lora_bias_names = set()
|
|
for k, t in named_params:
|
|
if "lora_" in k:
|
|
to_return[k] = t
|
|
bias_name = k.split("lora_")[0] + "bias"
|
|
lora_bias_names.add(bias_name)
|
|
elif "bias" in k:
|
|
maybe_lora_bias[k] = t
|
|
for k, t in maybe_lora_bias:
|
|
if bias_name in lora_bias_names:
|
|
to_return[bias_name] = t
|
|
else:
|
|
raise NotImplementedError
|
|
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
|
|
return to_return
|
|
|
|
|
|
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
|
|
to_return = {k: t for k, t in named_params if "lora_" not in k}
|
|
if require_grad_only:
|
|
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
|
|
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
|
return to_return
|
|
|
|
|
|
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
|
|
to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)}
|
|
to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()}
|
|
return to_return
|
|
|
|
|
|
def find_all_linear_names(model):
|
|
cls = torch.nn.Linear
|
|
lora_module_names = set()
|
|
multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler']
|
|
for name, module in model.named_modules():
|
|
if any(mm_keyword in name for mm_keyword in multimodal_keywords):
|
|
continue
|
|
if isinstance(module, cls):
|
|
names = name.split('.')
|
|
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
|
|
|
|
if 'lm_head' in lora_module_names: # needed for 16-bit
|
|
lora_module_names.remove('lm_head')
|
|
return list(lora_module_names)
|
|
|
|
|
|
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer,
|
|
output_dir: str):
|
|
"""Collects the state dict and dump to disk."""
|
|
|
|
if getattr(trainer.args, "tune_mm_mlp_adapter", False):
|
|
# Only save Adapter
|
|
keys_to_match = ['mm_projector']
|
|
if getattr(trainer.args, "use_im_start_end", False):
|
|
keys_to_match.extend(['embed_tokens', 'embed_in'])
|
|
|
|
weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match)
|
|
trainer.model.config.save_pretrained(output_dir)
|
|
|
|
current_folder = output_dir.split('/')[-1]
|
|
parent_folder = os.path.dirname(output_dir)
|
|
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
|
|
if current_folder.startswith('checkpoint-'):
|
|
mm_projector_folder = os.path.join(parent_folder, "mm_projector")
|
|
os.makedirs(mm_projector_folder, exist_ok=True)
|
|
torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin'))
|
|
else:
|
|
torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin'))
|
|
return
|
|
|
|
if trainer.deepspeed:
|
|
torch.cuda.synchronize()
|
|
trainer.save_model(output_dir)
|
|
return
|
|
|
|
state_dict = trainer.model.state_dict()
|
|
if trainer.args.should_save:
|
|
cpu_state_dict = {
|
|
key: value.cpu()
|
|
for key, value in state_dict.items()
|
|
}
|
|
del state_dict
|
|
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
|
|
|
|
|
|
def smart_tokenizer_and_embedding_resize(
|
|
special_tokens_dict: Dict,
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
model: transformers.PreTrainedModel,
|
|
):
|
|
"""Resize tokenizer and embedding.
|
|
|
|
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
|
|
"""
|
|
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
|
|
model.resize_token_embeddings(len(tokenizer))
|
|
|
|
if num_new_tokens > 0:
|
|
input_embeddings = model.get_input_embeddings().weight.data
|
|
output_embeddings = model.get_output_embeddings().weight.data
|
|
|
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
|
dim=0, keepdim=True)
|
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
|
dim=0, keepdim=True)
|
|
|
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
|
|
|
|
|
def _tokenize_fn(strings: Sequence[str],
|
|
tokenizer: transformers.PreTrainedTokenizer) -> Dict:
|
|
"""Tokenize a list of strings."""
|
|
tokenized_list = [
|
|
tokenizer(
|
|
text,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
max_length=tokenizer.model_max_length,
|
|
truncation=True,
|
|
) for text in strings
|
|
]
|
|
input_ids = labels = [
|
|
tokenized.input_ids[0] for tokenized in tokenized_list
|
|
]
|
|
input_ids_lens = labels_lens = [
|
|
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
|
|
for tokenized in tokenized_list
|
|
]
|
|
return dict(
|
|
input_ids=input_ids,
|
|
labels=labels,
|
|
input_ids_lens=input_ids_lens,
|
|
labels_lens=labels_lens,
|
|
)
|
|
|
|
|
|
def _mask_targets(target, tokenized_lens, speakers):
|
|
# cur_idx = 0
|
|
cur_idx = tokenized_lens[0]
|
|
tokenized_lens = tokenized_lens[1:]
|
|
target[:cur_idx] = IGNORE_INDEX
|
|
for tokenized_len, speaker in zip(tokenized_lens, speakers):
|
|
if speaker == "human":
|
|
target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX
|
|
cur_idx += tokenized_len
|
|
|
|
|
|
def _add_speaker_and_signal(header, source, get_conversation=True):
|
|
"""Add speaker and start/end signal on each round."""
|
|
BEGIN_SIGNAL = "### "
|
|
END_SIGNAL = "\n"
|
|
conversation = header
|
|
for sentence in source:
|
|
from_str = sentence["from"]
|
|
if from_str.lower() == "human":
|
|
from_str = conversation_lib.default_conversation.roles[0]
|
|
elif from_str.lower() == "gpt":
|
|
from_str = conversation_lib.default_conversation.roles[1]
|
|
else:
|
|
from_str = 'unknown'
|
|
sentence["value"] = (BEGIN_SIGNAL + from_str + ": " +
|
|
sentence["value"] + END_SIGNAL)
|
|
if get_conversation:
|
|
conversation += sentence["value"]
|
|
conversation += BEGIN_SIGNAL
|
|
return conversation
|
|
|
|
|
|
def preprocess_multimodal(
|
|
sources: Sequence[str],
|
|
data_args: DataArguments
|
|
) -> Dict:
|
|
is_multimodal = data_args.is_multimodal
|
|
if not is_multimodal:
|
|
return sources
|
|
|
|
for source in sources:
|
|
for sentence in source:
|
|
if DEFAULT_IMAGE_TOKEN in sentence['value']:
|
|
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip()
|
|
sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value']
|
|
sentence['value'] = sentence['value'].strip()
|
|
if "mmtag" in conversation_lib.default_conversation.version:
|
|
sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '<Image>' + DEFAULT_IMAGE_TOKEN + '</Image>')
|
|
replace_token = DEFAULT_IMAGE_TOKEN
|
|
if data_args.mm_use_im_start_end:
|
|
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
|
|
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)
|
|
|
|
return sources
|
|
|
|
|
|
def preprocess_llama_2(
|
|
sources,
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
has_image: bool = False
|
|
) -> Dict:
|
|
conv = conversation_lib.default_conversation.copy()
|
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
|
|
|
# Apply prompt templates
|
|
conversations = []
|
|
for i, source in enumerate(sources):
|
|
if roles[source[0]["from"]] != conv.roles[0]:
|
|
# Skip the first one if it is not from human
|
|
source = source[1:]
|
|
|
|
conv.messages = []
|
|
for j, sentence in enumerate(source):
|
|
role = roles[sentence["from"]]
|
|
assert role == conv.roles[j % 2], f"{i}"
|
|
conv.append_message(role, sentence["value"])
|
|
conversations.append(conv.get_prompt())
|
|
|
|
# Tokenize conversations
|
|
|
|
if has_image:
|
|
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
|
|
else:
|
|
input_ids = tokenizer(
|
|
conversations,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
max_length=tokenizer.model_max_length,
|
|
truncation=True,
|
|
).input_ids
|
|
|
|
targets = input_ids.clone()
|
|
|
|
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2
|
|
|
|
# Mask targets
|
|
sep = "[/INST] "
|
|
for conversation, target in zip(conversations, targets):
|
|
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
|
|
|
rounds = conversation.split(conv.sep2)
|
|
cur_len = 1
|
|
target[:cur_len] = IGNORE_INDEX
|
|
for i, rou in enumerate(rounds):
|
|
if rou == "":
|
|
break
|
|
|
|
parts = rou.split(sep)
|
|
if len(parts) != 2:
|
|
break
|
|
parts[0] += sep
|
|
|
|
if has_image:
|
|
round_len = len(tokenizer_image_token(rou, tokenizer))
|
|
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
|
|
else:
|
|
round_len = len(tokenizer(rou).input_ids)
|
|
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
|
|
|
|
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
|
|
|
cur_len += round_len
|
|
target[cur_len:] = IGNORE_INDEX
|
|
|
|
if cur_len < tokenizer.model_max_length:
|
|
if cur_len != total_len:
|
|
target[:] = IGNORE_INDEX
|
|
print(
|
|
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
|
|
f" (ignored)"
|
|
)
|
|
|
|
return dict(
|
|
input_ids=input_ids,
|
|
labels=targets,
|
|
)
|
|
|
|
|
|
def preprocess_v1(
|
|
sources,
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
has_image: bool = False
|
|
) -> Dict:
|
|
conv = conversation_lib.default_conversation.copy()
|
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
|
|
|
# Apply prompt templates
|
|
conversations = []
|
|
for i, source in enumerate(sources):
|
|
if roles[source[0]["from"]] != conv.roles[0]:
|
|
# Skip the first one if it is not from human
|
|
source = source[1:]
|
|
|
|
conv.messages = []
|
|
for j, sentence in enumerate(source):
|
|
role = roles[sentence["from"]]
|
|
assert role == conv.roles[j % 2], f"{i}"
|
|
conv.append_message(role, sentence["value"])
|
|
conversations.append(conv.get_prompt())
|
|
|
|
# Tokenize conversations
|
|
|
|
if has_image:
|
|
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
|
|
else:
|
|
input_ids = tokenizer(
|
|
conversations,
|
|
return_tensors="pt",
|
|
padding="longest",
|
|
max_length=tokenizer.model_max_length,
|
|
truncation=True,
|
|
).input_ids
|
|
|
|
targets = input_ids.clone()
|
|
|
|
assert conv.sep_style == conversation_lib.SeparatorStyle.TWO
|
|
|
|
# Mask targets
|
|
sep = conv.sep + conv.roles[1] + ": "
|
|
for conversation, target in zip(conversations, targets):
|
|
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
|
|
|
rounds = conversation.split(conv.sep2)
|
|
cur_len = 1
|
|
target[:cur_len] = IGNORE_INDEX
|
|
for i, rou in enumerate(rounds):
|
|
if rou == "":
|
|
break
|
|
|
|
parts = rou.split(sep)
|
|
if len(parts) != 2:
|
|
break
|
|
parts[0] += sep
|
|
|
|
if has_image:
|
|
round_len = len(tokenizer_image_token(rou, tokenizer))
|
|
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
|
|
else:
|
|
round_len = len(tokenizer(rou).input_ids)
|
|
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
|
|
|
|
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
|
|
|
cur_len += round_len
|
|
target[cur_len:] = IGNORE_INDEX
|
|
|
|
if cur_len < tokenizer.model_max_length:
|
|
if cur_len != total_len:
|
|
target[:] = IGNORE_INDEX
|
|
print(
|
|
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
|
|
f" (ignored)"
|
|
)
|
|
|
|
return dict(
|
|
input_ids=input_ids,
|
|
labels=targets,
|
|
)
|
|
|
|
|
|
def preprocess_mpt(
|
|
sources,
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
) -> Dict:
|
|
conv = conversation_lib.default_conversation.copy()
|
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
|
|
|
|
# Apply prompt templates
|
|
conversations = []
|
|
for i, source in enumerate(sources):
|
|
if roles[source[0]["from"]] != conv.roles[0]:
|
|
# Skip the first one if it is not from human
|
|
source = source[1:]
|
|
|
|
conv.messages = []
|
|
for j, sentence in enumerate(source):
|
|
role = roles[sentence["from"]]
|
|
assert role == conv.roles[j % 2], f"{i}"
|
|
conv.append_message(role, sentence["value"])
|
|
conversations.append(conv.get_prompt())
|
|
|
|
# Tokenize conversations
|
|
input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0)
|
|
targets = input_ids.clone()
|
|
assert conv.sep_style == conversation_lib.SeparatorStyle.MPT
|
|
|
|
# Mask targets
|
|
sep = conv.sep + conv.roles[1]
|
|
for conversation, target in zip(conversations, targets):
|
|
total_len = int(target.ne(tokenizer.pad_token_id).sum())
|
|
|
|
rounds = conversation.split(conv.sep)
|
|
re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt
|
|
for conv_idx in range(3, len(rounds), 2):
|
|
re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx+2])) # user + gpt
|
|
cur_len = 0
|
|
target[:cur_len] = IGNORE_INDEX
|
|
for i, rou in enumerate(re_rounds):
|
|
if rou == "":
|
|
break
|
|
|
|
parts = rou.split(sep)
|
|
if len(parts) != 2:
|
|
break
|
|
parts[0] += sep
|
|
round_len = len(tokenizer_image_token(rou, tokenizer)) + len(tokenizer_image_token(conv.sep, tokenizer))
|
|
instruction_len = len(tokenizer_image_token(parts[0], tokenizer))
|
|
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
|
|
|
|
cur_len += round_len
|
|
target[cur_len:] = IGNORE_INDEX
|
|
|
|
if cur_len < tokenizer.model_max_length:
|
|
if cur_len != total_len:
|
|
target[:] = IGNORE_INDEX
|
|
print(
|
|
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
|
|
f" (ignored)"
|
|
)
|
|
|
|
return dict(
|
|
input_ids=input_ids,
|
|
labels=targets,
|
|
)
|
|
|
|
|
|
def preprocess_plain(
|
|
sources: Sequence[str],
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
) -> Dict:
|
|
# add end signal and concatenate together
|
|
conversations = []
|
|
for source in sources:
|
|
assert len(source) == 2
|
|
assert DEFAULT_IMAGE_TOKEN in source[0]['value']
|
|
source[0]['value'] = DEFAULT_IMAGE_TOKEN
|
|
conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep
|
|
conversations.append(conversation)
|
|
# tokenize conversations
|
|
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
|
|
targets = copy.deepcopy(input_ids)
|
|
for target, source in zip(targets, sources):
|
|
tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer))
|
|
target[:tokenized_len] = IGNORE_INDEX
|
|
|
|
return dict(input_ids=input_ids, labels=targets)
|
|
|
|
|
|
def preprocess(
|
|
sources: Sequence[str],
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
has_image: bool = False
|
|
) -> Dict:
|
|
"""
|
|
Given a list of sources, each is a conversation list. This transform:
|
|
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
|
|
2. Concatenate conversations together;
|
|
3. Tokenize the concatenated conversation;
|
|
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
|
|
"""
|
|
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN:
|
|
return preprocess_plain(sources, tokenizer)
|
|
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2:
|
|
return preprocess_llama_2(sources, tokenizer, has_image=has_image)
|
|
if conversation_lib.default_conversation.version.startswith("v1"):
|
|
return preprocess_v1(sources, tokenizer, has_image=has_image)
|
|
if conversation_lib.default_conversation.version == "mpt":
|
|
return preprocess_mpt(sources, tokenizer)
|
|
# add end signal and concatenate together
|
|
conversations = []
|
|
for source in sources:
|
|
header = f"{conversation_lib.default_conversation.system}\n\n"
|
|
conversation = _add_speaker_and_signal(header, source)
|
|
conversations.append(conversation)
|
|
# tokenize conversations
|
|
def get_tokenize_len(prompts):
|
|
return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts]
|
|
|
|
if has_image:
|
|
input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations]
|
|
else:
|
|
conversations_tokenized = _tokenize_fn(conversations, tokenizer)
|
|
input_ids = conversations_tokenized["input_ids"]
|
|
|
|
targets = copy.deepcopy(input_ids)
|
|
for target, source in zip(targets, sources):
|
|
if has_image:
|
|
tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source])
|
|
else:
|
|
tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"]
|
|
speakers = [sentence["from"] for sentence in source]
|
|
_mask_targets(target, tokenized_lens, speakers)
|
|
|
|
return dict(input_ids=input_ids, labels=targets)
|
|
|
|
|
|
class LazySupervisedDataset(Dataset):
|
|
"""Dataset for supervised fine-tuning."""
|
|
|
|
def __init__(self, data_path: str,
|
|
tokenizer: transformers.PreTrainedTokenizer,
|
|
data_args: DataArguments):
|
|
super(LazySupervisedDataset, self).__init__()
|
|
list_data_dict = json.load(open(data_path, "r"))
|
|
|
|
rank0_print("Formatting inputs...Skip in lazy mode")
|
|
self.tokenizer = tokenizer
|
|
self.list_data_dict = list_data_dict
|
|
self.data_args = data_args
|
|
|
|
def __len__(self):
|
|
return len(self.list_data_dict)
|
|
|
|
@property
|
|
def lengths(self):
|
|
length_list = []
|
|
for sample in self.list_data_dict:
|
|
img_tokens = 128 if 'image' in sample else 0
|
|
length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
|
|
return length_list
|
|
|
|
@property
|
|
def modality_lengths(self):
|
|
length_list = []
|
|
for sample in self.list_data_dict:
|
|
cur_len = sum(len(conv['value'].split()) for conv in sample['conversations'])
|
|
cur_len = cur_len if 'image' in sample else -cur_len
|
|
length_list.append(cur_len)
|
|
return length_list
|
|
|
|
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
|
|
sources = self.list_data_dict[i]
|
|
if isinstance(i, int):
|
|
sources = [sources]
|
|
assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
|
|
if 'image' in sources[0]:
|
|
image_file = self.list_data_dict[i]['image']
|
|
image_folder = self.data_args.image_folder
|
|
processor = self.data_args.image_processor
|
|
image = Image.open(os.path.join(image_folder, image_file)).convert('RGB')
|
|
if self.data_args.image_aspect_ratio == 'pad':
|
|
def expand2square(pil_img, background_color):
|
|
width, height = pil_img.size
|
|
if width == height:
|
|
return pil_img
|
|
elif width > height:
|
|
result = Image.new(pil_img.mode, (width, width), background_color)
|
|
result.paste(pil_img, (0, (width - height) // 2))
|
|
return result
|
|
else:
|
|
result = Image.new(pil_img.mode, (height, height), background_color)
|
|
result.paste(pil_img, ((height - width) // 2, 0))
|
|
return result
|
|
image = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
|
|
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
|
else:
|
|
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
|
sources = preprocess_multimodal(
|
|
copy.deepcopy([e["conversations"] for e in sources]),
|
|
self.data_args)
|
|
else:
|
|
sources = copy.deepcopy([e["conversations"] for e in sources])
|
|
data_dict = preprocess(
|
|
sources,
|
|
self.tokenizer,
|
|
has_image=('image' in self.list_data_dict[i]))
|
|
if isinstance(i, int):
|
|
data_dict = dict(input_ids=data_dict["input_ids"][0],
|
|
labels=data_dict["labels"][0])
|
|
|
|
# image exist in the data
|
|
if 'image' in self.list_data_dict[i]:
|
|
data_dict['image'] = image
|
|
elif self.data_args.is_multimodal:
|
|
# image does not exist in the data, but the model is multimodal
|
|
crop_size = self.data_args.image_processor.crop_size
|
|
data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width'])
|
|
return data_dict
|
|
|
|
|
|
@dataclass
|
|
class DataCollatorForSupervisedDataset(object):
|
|
"""Collate examples for supervised fine-tuning."""
|
|
|
|
tokenizer: transformers.PreTrainedTokenizer
|
|
|
|
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
|
|
input_ids, labels = tuple([instance[key] for instance in instances]
|
|
for key in ("input_ids", "labels"))
|
|
input_ids = torch.nn.utils.rnn.pad_sequence(
|
|
input_ids,
|
|
batch_first=True,
|
|
padding_value=self.tokenizer.pad_token_id)
|
|
labels = torch.nn.utils.rnn.pad_sequence(labels,
|
|
batch_first=True,
|
|
padding_value=IGNORE_INDEX)
|
|
input_ids = input_ids[:, :self.tokenizer.model_max_length]
|
|
labels = labels[:, :self.tokenizer.model_max_length]
|
|
batch = dict(
|
|
input_ids=input_ids,
|
|
labels=labels,
|
|
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
|
|
)
|
|
|
|
if 'image' in instances[0]:
|
|
images = [instance['image'] for instance in instances]
|
|
if all(x is not None and x.shape == images[0].shape for x in images):
|
|
batch['images'] = torch.stack(images)
|
|
else:
|
|
batch['images'] = images
|
|
|
|
return batch
|
|
|
|
|
|
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer,
|
|
data_args) -> Dict:
|
|
"""Make dataset and collator for supervised fine-tuning."""
|
|
train_dataset = LazySupervisedDataset(tokenizer=tokenizer,
|
|
data_path=data_args.data_path,
|
|
data_args=data_args)
|
|
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
|
|
return dict(train_dataset=train_dataset,
|
|
eval_dataset=None,
|
|
data_collator=data_collator)
|
|
|
|
|
|
def train():
|
|
global local_rank
|
|
|
|
parser = transformers.HfArgumentParser(
|
|
(ModelArguments, DataArguments, TrainingArguments))
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
|
local_rank = training_args.local_rank
|
|
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
|
|
|
bnb_model_from_pretrained_args = {}
|
|
if training_args.bits in [4, 8]:
|
|
from transformers import BitsAndBytesConfig
|
|
bnb_model_from_pretrained_args.update(dict(
|
|
device_map={"": training_args.device},
|
|
load_in_4bit=training_args.bits == 4,
|
|
load_in_8bit=training_args.bits == 8,
|
|
quantization_config=BitsAndBytesConfig(
|
|
load_in_4bit=training_args.bits == 4,
|
|
load_in_8bit=training_args.bits == 8,
|
|
llm_int8_threshold=6.0,
|
|
llm_int8_has_fp16_weight=False,
|
|
bnb_4bit_compute_dtype=compute_dtype,
|
|
bnb_4bit_use_double_quant=training_args.double_quant,
|
|
bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'}
|
|
)
|
|
))
|
|
|
|
if model_args.vision_tower is not None:
|
|
if 'mpt' in model_args.model_name_or_path:
|
|
config = transformers.AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
|
|
config.attn_config['attn_impl'] = training_args.mpt_attn_impl
|
|
model = LlavaMPTForCausalLM.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
config=config,
|
|
cache_dir=training_args.cache_dir,
|
|
**bnb_model_from_pretrained_args
|
|
)
|
|
else:
|
|
model = LlavaLlamaForCausalLM.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=training_args.cache_dir,
|
|
**bnb_model_from_pretrained_args
|
|
)
|
|
else:
|
|
model = transformers.LlamaForCausalLM.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=training_args.cache_dir,
|
|
**bnb_model_from_pretrained_args
|
|
)
|
|
model.config.use_cache = False
|
|
|
|
if model_args.freeze_backbone:
|
|
model.model.requires_grad_(False)
|
|
|
|
if training_args.bits in [4, 8]:
|
|
from peft import prepare_model_for_kbit_training
|
|
model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
|
|
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
|
|
|
|
if training_args.gradient_checkpointing:
|
|
if hasattr(model, "enable_input_require_grads"):
|
|
model.enable_input_require_grads()
|
|
else:
|
|
def make_inputs_require_grad(module, input, output):
|
|
output.requires_grad_(True)
|
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
|
|
|
if training_args.lora_enable:
|
|
from peft import LoraConfig, get_peft_model
|
|
lora_config = LoraConfig(
|
|
r=training_args.lora_r,
|
|
lora_alpha=training_args.lora_alpha,
|
|
target_modules=find_all_linear_names(model),
|
|
lora_dropout=training_args.lora_dropout,
|
|
bias=training_args.lora_bias,
|
|
task_type="CAUSAL_LM",
|
|
)
|
|
if training_args.bits == 16:
|
|
if training_args.bf16:
|
|
model.to(torch.bfloat16)
|
|
if training_args.fp16:
|
|
model.to(torch.float16)
|
|
rank0_print("Adding LoRA adapters...")
|
|
model = get_peft_model(model, lora_config)
|
|
|
|
if 'mpt' in model_args.model_name_or_path:
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=training_args.cache_dir,
|
|
model_max_length=training_args.model_max_length,
|
|
padding_side="right"
|
|
)
|
|
else:
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
cache_dir=training_args.cache_dir,
|
|
model_max_length=training_args.model_max_length,
|
|
padding_side="right",
|
|
use_fast=False,
|
|
)
|
|
|
|
if model_args.version == "v0":
|
|
if tokenizer.pad_token is None:
|
|
smart_tokenizer_and_embedding_resize(
|
|
special_tokens_dict=dict(pad_token="[PAD]"),
|
|
tokenizer=tokenizer,
|
|
model=model,
|
|
)
|
|
elif model_args.version == "v0.5":
|
|
tokenizer.pad_token = tokenizer.unk_token
|
|
else:
|
|
tokenizer.pad_token = tokenizer.unk_token
|
|
if model_args.version in conversation_lib.conv_templates:
|
|
conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version]
|
|
else:
|
|
conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"]
|
|
|
|
if model_args.vision_tower is not None:
|
|
model.get_model().initialize_vision_modules(
|
|
model_args=model_args,
|
|
fsdp=training_args.fsdp
|
|
)
|
|
|
|
vision_tower = model.get_vision_tower()
|
|
vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device)
|
|
|
|
data_args.image_processor = vision_tower.image_processor
|
|
data_args.is_multimodal = True
|
|
|
|
model.config.image_aspect_ratio = data_args.image_aspect_ratio
|
|
model.config.image_grid_pinpoints = data_args.image_grid_pinpoints
|
|
|
|
model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter
|
|
if model_args.tune_mm_mlp_adapter:
|
|
model.requires_grad_(False)
|
|
for p in model.get_model().mm_projector.parameters():
|
|
p.requires_grad = True
|
|
|
|
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
|
|
if training_args.freeze_mm_mlp_adapter:
|
|
for p in model.get_model().mm_projector.parameters():
|
|
p.requires_grad = False
|
|
|
|
if training_args.bits in [4, 8]:
|
|
model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device)
|
|
|
|
model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end
|
|
training_args.use_im_start_end = model_args.mm_use_im_start_end
|
|
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token
|
|
model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer)
|
|
|
|
if training_args.bits in [4, 8]:
|
|
from peft.tuners.lora import LoraLayer
|
|
for name, module in model.named_modules():
|
|
if isinstance(module, LoraLayer):
|
|
if training_args.bf16:
|
|
module = module.to(torch.bfloat16)
|
|
if 'norm' in name:
|
|
module = module.to(torch.float32)
|
|
if 'lm_head' in name or 'embed_tokens' in name:
|
|
if hasattr(module, 'weight'):
|
|
if training_args.bf16 and module.weight.dtype == torch.float32:
|
|
module = module.to(torch.bfloat16)
|
|
|
|
data_module = make_supervised_data_module(tokenizer=tokenizer,
|
|
data_args=data_args)
|
|
trainer = LLaVATrainer(model=model,
|
|
tokenizer=tokenizer,
|
|
args=training_args,
|
|
**data_module)
|
|
|
|
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
|
|
trainer.train(resume_from_checkpoint=True)
|
|
else:
|
|
trainer.train()
|
|
trainer.save_state()
|
|
|
|
model.config.use_cache = True
|
|
|
|
if training_args.lora_enable:
|
|
state_dict = get_peft_state_maybe_zero_3(
|
|
model.named_parameters(), training_args.lora_bias
|
|
)
|
|
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
|
|
model.named_parameters()
|
|
)
|
|
if training_args.local_rank == 0 or training_args.local_rank == -1:
|
|
model.config.save_pretrained(training_args.output_dir)
|
|
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
|
|
torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin'))
|
|
else:
|
|
safe_save_model_for_hf_trainer(trainer=trainer,
|
|
output_dir=training_args.output_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
train()
|