53 lines
1.6 KiB
Python
53 lines
1.6 KiB
Python
from abc import abstractmethod
|
|
from typing import Any, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from ....modules.distributions.distributions import DiagonalGaussianDistribution
|
|
|
|
|
|
class AbstractRegularizer(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def get_trainable_parameters(self) -> Any:
|
|
raise NotImplementedError()
|
|
|
|
|
|
class DiagonalGaussianRegularizer(AbstractRegularizer):
|
|
def __init__(self, sample: bool = True):
|
|
super().__init__()
|
|
self.sample = sample
|
|
|
|
def get_trainable_parameters(self) -> Any:
|
|
yield from ()
|
|
|
|
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
|
log = dict()
|
|
posterior = DiagonalGaussianDistribution(z)
|
|
if self.sample:
|
|
z = posterior.sample()
|
|
else:
|
|
z = posterior.mode()
|
|
kl_loss = posterior.kl()
|
|
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
|
log["kl_loss"] = kl_loss
|
|
return z, log
|
|
|
|
|
|
def measure_perplexity(predicted_indices, num_centroids):
|
|
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
|
|
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
|
|
encodings = (
|
|
F.one_hot(predicted_indices, num_centroids).float().reshape(-1, num_centroids)
|
|
)
|
|
avg_probs = encodings.mean(0)
|
|
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
|
|
cluster_use = torch.sum(avg_probs > 0)
|
|
return perplexity, cluster_use
|