88 lines
2.5 KiB
Python
88 lines
2.5 KiB
Python
from functools import partial
|
|
|
|
import torch
|
|
|
|
from ...util import default, instantiate_from_config
|
|
|
|
|
|
class VanillaCFG:
|
|
"""
|
|
implements parallelized CFG
|
|
"""
|
|
|
|
def __init__(self, scale, dyn_thresh_config=None):
|
|
scale_schedule = lambda scale, sigma: scale # independent of step
|
|
self.scale_schedule = partial(scale_schedule, scale)
|
|
self.dyn_thresh = instantiate_from_config(
|
|
default(
|
|
dyn_thresh_config,
|
|
{
|
|
"target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding"
|
|
},
|
|
)
|
|
)
|
|
|
|
def __call__(self, x, sigma):
|
|
x_u, x_c = x.chunk(2)
|
|
scale_value = self.scale_schedule(sigma)
|
|
x_pred = self.dyn_thresh(x_u, x_c, scale_value)
|
|
return x_pred
|
|
|
|
def prepare_inputs(self, x, s, c, uc):
|
|
c_out = dict()
|
|
|
|
for k in c:
|
|
if k in ["vector", "crossattn", "concat", "control", 'control_vector', 'mask_x']:
|
|
c_out[k] = torch.cat((uc[k], c[k]), 0)
|
|
else:
|
|
assert c[k] == uc[k]
|
|
c_out[k] = c[k]
|
|
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
|
|
|
|
|
|
|
|
class LinearCFG:
|
|
def __init__(self, scale, scale_min=None, dyn_thresh_config=None):
|
|
if scale_min is None:
|
|
scale_min = scale
|
|
scale_schedule = lambda scale, scale_min, sigma: (scale - scale_min) * sigma / 14.6146 + scale_min
|
|
self.scale_schedule = partial(scale_schedule, scale, scale_min)
|
|
self.dyn_thresh = instantiate_from_config(
|
|
default(
|
|
dyn_thresh_config,
|
|
{
|
|
"target": "sgm.modules.diffusionmodules.sampling_utils.NoDynamicThresholding"
|
|
},
|
|
)
|
|
)
|
|
|
|
def __call__(self, x, sigma):
|
|
x_u, x_c = x.chunk(2)
|
|
scale_value = self.scale_schedule(sigma)
|
|
x_pred = self.dyn_thresh(x_u, x_c, scale_value)
|
|
return x_pred
|
|
|
|
def prepare_inputs(self, x, s, c, uc):
|
|
c_out = dict()
|
|
|
|
for k in c:
|
|
if k in ["vector", "crossattn", "concat", "control", 'control_vector', 'mask_x']:
|
|
c_out[k] = torch.cat((uc[k], c[k]), 0)
|
|
else:
|
|
assert c[k] == uc[k]
|
|
c_out[k] = c[k]
|
|
return torch.cat([x] * 2), torch.cat([s] * 2), c_out
|
|
|
|
|
|
|
|
class IdentityGuider:
|
|
def __call__(self, x, sigma):
|
|
return x
|
|
|
|
def prepare_inputs(self, x, s, c, uc):
|
|
c_out = dict()
|
|
|
|
for k in c:
|
|
c_out[k] = c[k]
|
|
|
|
return x, s, c_out
|