forked from LBRYCommunity/lbry-sdk
432 lines
13 KiB
Python
432 lines
13 KiB
Python
|
"""
|
||
|
Delayed AR with variable decay rate.
|
||
|
|
||
|
The spike height function is also simpler.
|
||
|
"""
|
||
|
|
||
|
import copy
|
||
|
import time
|
||
|
import apsw
|
||
|
|
||
|
# Half life in blocks *for lower LBC claims* (it's shorter for whale claims)
|
||
|
HALF_LIFE = 200
|
||
|
|
||
|
# Whale threshold (higher -> less DB writing)
|
||
|
WHALE_THRESHOLD = 3.0
|
||
|
|
||
|
# Decay coefficient per block
|
||
|
DECAY = 0.5**(1.0/HALF_LIFE)
|
||
|
|
||
|
# How frequently to write trending values to the db
|
||
|
SAVE_INTERVAL = 10
|
||
|
|
||
|
# Renormalisation interval
|
||
|
RENORM_INTERVAL = 1000
|
||
|
|
||
|
# Assertion
|
||
|
assert RENORM_INTERVAL % SAVE_INTERVAL == 0
|
||
|
|
||
|
# Decay coefficient per renormalisation interval
|
||
|
DECAY_PER_RENORM = DECAY**(RENORM_INTERVAL)
|
||
|
|
||
|
# Log trending calculations?
|
||
|
TRENDING_LOG = True
|
||
|
|
||
|
|
||
|
def install(connection):
|
||
|
"""
|
||
|
Install the trending algorithm.
|
||
|
"""
|
||
|
check_trending_values(connection)
|
||
|
|
||
|
if TRENDING_LOG:
|
||
|
f = open("trending_variable_decay.log", "a")
|
||
|
f.close()
|
||
|
|
||
|
# Stub
|
||
|
CREATE_TREND_TABLE = ""
|
||
|
|
||
|
|
||
|
def check_trending_values(connection):
|
||
|
"""
|
||
|
If the trending values appear to be based on the zscore algorithm,
|
||
|
reset them. This will allow resyncing from a standard snapshot.
|
||
|
"""
|
||
|
c = connection.cursor()
|
||
|
needs_reset = False
|
||
|
for row in c.execute("SELECT COUNT(*) num FROM claim WHERE trending_global <> 0;"):
|
||
|
if row[0] != 0:
|
||
|
needs_reset = True
|
||
|
break
|
||
|
|
||
|
if needs_reset:
|
||
|
print("Resetting some columns. This might take a while...", flush=True, end="")
|
||
|
c.execute(""" BEGIN;
|
||
|
UPDATE claim SET trending_group = 0;
|
||
|
UPDATE claim SET trending_mixed = 0;
|
||
|
UPDATE claim SET trending_global = 0;
|
||
|
UPDATE claim SET trending_local = 0;
|
||
|
COMMIT;""")
|
||
|
print("done.")
|
||
|
|
||
|
|
||
|
def spike_height(x, x_old):
|
||
|
"""
|
||
|
Compute the size of a trending spike (normed - constant units).
|
||
|
"""
|
||
|
|
||
|
# Sign of trending spike
|
||
|
sign = 1.0
|
||
|
if x < x_old:
|
||
|
sign = -1.0
|
||
|
|
||
|
# Magnitude
|
||
|
mag = abs(x**0.25 - x_old**0.25)
|
||
|
|
||
|
# Minnow boost
|
||
|
mag *= 1.0 + 2E4/(x + 100.0)**2
|
||
|
|
||
|
return sign*mag
|
||
|
|
||
|
|
||
|
|
||
|
def get_time_boost(height):
|
||
|
"""
|
||
|
Return the time boost at a given height.
|
||
|
"""
|
||
|
return 1.0/DECAY**(height % RENORM_INTERVAL)
|
||
|
|
||
|
|
||
|
def trending_log(s):
|
||
|
"""
|
||
|
Log a string.
|
||
|
"""
|
||
|
if TRENDING_LOG:
|
||
|
fout = open("trending_variable_decay.log", "a")
|
||
|
fout.write(s)
|
||
|
fout.flush()
|
||
|
fout.close()
|
||
|
|
||
|
class TrendingData:
|
||
|
"""
|
||
|
An object of this class holds trending data
|
||
|
"""
|
||
|
def __init__(self):
|
||
|
|
||
|
# Dict from claim id to some trending info.
|
||
|
# Units are TIME VARIABLE in here
|
||
|
self.claims = {}
|
||
|
|
||
|
# Claims with >= WHALE_THRESHOLD LBC total amount
|
||
|
self.whales = set([])
|
||
|
|
||
|
# Have all claims been read from db yet?
|
||
|
self.initialised = False
|
||
|
|
||
|
# List of pending spikes.
|
||
|
# Units are CONSTANT in here
|
||
|
self.pending_spikes = []
|
||
|
|
||
|
def insert_claim_from_load(self, height, claim_hash, trending_score, total_amount):
|
||
|
assert not self.initialised
|
||
|
self.claims[claim_hash] = {"trending_score": trending_score,
|
||
|
"total_amount": total_amount,
|
||
|
"changed": False}
|
||
|
|
||
|
if trending_score >= WHALE_THRESHOLD*get_time_boost(height):
|
||
|
self.add_whale(claim_hash)
|
||
|
|
||
|
def add_whale(self, claim_hash):
|
||
|
self.whales.add(claim_hash)
|
||
|
|
||
|
def apply_spikes(self, height):
|
||
|
"""
|
||
|
Apply all pending spikes that are due at this height.
|
||
|
Apply with time boost ON.
|
||
|
"""
|
||
|
time_boost = get_time_boost(height)
|
||
|
|
||
|
for spike in self.pending_spikes:
|
||
|
if spike["height"] > height:
|
||
|
# Ignore
|
||
|
pass
|
||
|
if spike["height"] == height:
|
||
|
# Apply
|
||
|
self.claims[spike["claim_hash"]]["trending_score"] += time_boost*spike["size"]
|
||
|
self.claims[spike["claim_hash"]]["changed"] = True
|
||
|
|
||
|
if self.claims[spike["claim_hash"]]["trending_score"] >= WHALE_THRESHOLD*time_boost:
|
||
|
self.add_whale(spike["claim_hash"])
|
||
|
if spike["claim_hash"] in self.whales and \
|
||
|
self.claims[spike["claim_hash"]]["trending_score"] < WHALE_THRESHOLD*time_boost:
|
||
|
self.whales.remove(spike["claim_hash"])
|
||
|
|
||
|
|
||
|
# Keep only future spikes
|
||
|
self.pending_spikes = [s for s in self.pending_spikes \
|
||
|
if s["height"] > height]
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def update_claim(self, height, claim_hash, total_amount):
|
||
|
"""
|
||
|
Update trending data for a claim, given its new total amount.
|
||
|
"""
|
||
|
assert self.initialised
|
||
|
|
||
|
# Extract existing total amount and trending score
|
||
|
# or use starting values if the claim is new
|
||
|
if claim_hash in self.claims:
|
||
|
old_state = copy.deepcopy(self.claims[claim_hash])
|
||
|
else:
|
||
|
old_state = {"trending_score": 0.0,
|
||
|
"total_amount": 0.0,
|
||
|
"changed": False}
|
||
|
|
||
|
# Calculate LBC change
|
||
|
change = total_amount - old_state["total_amount"]
|
||
|
|
||
|
# Modify data if there was an LBC change
|
||
|
if change != 0.0:
|
||
|
spike = spike_height(total_amount,
|
||
|
old_state["total_amount"])
|
||
|
delay = min(int((total_amount + 1E-8)**0.4), HALF_LIFE)
|
||
|
|
||
|
if change < 0.0:
|
||
|
|
||
|
# How big would the spike be for the inverse movement?
|
||
|
reverse_spike = spike_height(old_state["total_amount"], total_amount)
|
||
|
|
||
|
# Remove that much spike from future pending ones
|
||
|
for future_spike in self.pending_spikes:
|
||
|
if future_spike["claim_hash"] == claim_hash:
|
||
|
if reverse_spike >= future_spike["size"]:
|
||
|
reverse_spike -= future_spike["size"]
|
||
|
future_spike["size"] = 0.0
|
||
|
elif reverse_spike > 0.0:
|
||
|
future_spike["size"] -= reverse_spike
|
||
|
reverse_spike = 0.0
|
||
|
|
||
|
delay = 0
|
||
|
spike = -reverse_spike
|
||
|
|
||
|
self.pending_spikes.append({"height": height + delay,
|
||
|
"claim_hash": claim_hash,
|
||
|
"size": spike})
|
||
|
|
||
|
self.claims[claim_hash] = {"total_amount": total_amount,
|
||
|
"trending_score": old_state["trending_score"],
|
||
|
"changed": False}
|
||
|
|
||
|
def process_whales(self, height):
|
||
|
"""
|
||
|
Whale claims decay faster.
|
||
|
"""
|
||
|
if height % SAVE_INTERVAL != 0:
|
||
|
return
|
||
|
|
||
|
for claim_hash in self.whales:
|
||
|
trending_normed = self.claims[claim_hash]["trending_score"]/get_time_boost(height)
|
||
|
|
||
|
# Overall multiplication factor for decay rate
|
||
|
decay_rate_factor = trending_normed/WHALE_THRESHOLD
|
||
|
|
||
|
# The -1 is because this is just the *extra* part being applied
|
||
|
factor = (DECAY**SAVE_INTERVAL)**(decay_rate_factor - 1.0)
|
||
|
# print(claim_hash, trending_normed, decay_rate_factor)
|
||
|
self.claims[claim_hash]["trending_score"] *= factor
|
||
|
self.claims[claim_hash]["changed"] = True
|
||
|
|
||
|
|
||
|
def test_trending():
|
||
|
"""
|
||
|
Quick trending test for claims with different support patterns.
|
||
|
Actually use the run() function.
|
||
|
"""
|
||
|
|
||
|
# Create a fake "claims.db" for testing
|
||
|
# pylint: disable=I1101
|
||
|
dbc = apsw.Connection(":memory:")
|
||
|
db = dbc.cursor()
|
||
|
|
||
|
# Create table
|
||
|
db.execute("""
|
||
|
BEGIN;
|
||
|
CREATE TABLE claim (claim_hash TEXT PRIMARY KEY,
|
||
|
amount REAL NOT NULL DEFAULT 0.0,
|
||
|
support_amount REAL NOT NULL DEFAULT 0.0,
|
||
|
trending_mixed REAL NOT NULL DEFAULT 0.0);
|
||
|
COMMIT;
|
||
|
""")
|
||
|
|
||
|
# Insert initial states of claims
|
||
|
everything = {"huge_whale": 0.01,
|
||
|
"huge_whale_botted": 0.01,
|
||
|
"medium_whale": 0.01,
|
||
|
"small_whale": 0.01,
|
||
|
"minnow": 0.01}
|
||
|
|
||
|
def to_list_of_tuples(stuff):
|
||
|
l = []
|
||
|
for key in stuff:
|
||
|
l.append((key, stuff[key]))
|
||
|
return l
|
||
|
|
||
|
db.executemany("""
|
||
|
INSERT INTO claim (claim_hash, amount) VALUES (?, 1E8*?);
|
||
|
""", to_list_of_tuples(everything))
|
||
|
|
||
|
height = 0
|
||
|
run(db, height, height, everything.keys())
|
||
|
|
||
|
# Save trajectories for plotting
|
||
|
trajectories = {}
|
||
|
for key in trending_data.claims:
|
||
|
trajectories[key] = [trending_data.claims[key]["trending_score"]]
|
||
|
|
||
|
# Main loop
|
||
|
for height in range(1, 1000):
|
||
|
|
||
|
# One-off supports
|
||
|
if height == 1:
|
||
|
everything["huge_whale"] += 5E5
|
||
|
everything["medium_whale"] += 5E4
|
||
|
everything["small_whale"] += 5E3
|
||
|
|
||
|
# Every block
|
||
|
if height < 500:
|
||
|
everything["huge_whale_botted"] += 5E5/500
|
||
|
everything["minnow"] += 1
|
||
|
|
||
|
# Remove supports
|
||
|
if height == 500:
|
||
|
for key in everything:
|
||
|
everything[key] = 0.01
|
||
|
|
||
|
# Whack into the db
|
||
|
db.executemany("""
|
||
|
UPDATE claim SET amount = 1E8*? WHERE claim_hash = ?;
|
||
|
""", [(y, x) for (x, y) in to_list_of_tuples(everything)])
|
||
|
|
||
|
# Call run()
|
||
|
run(db, height, height, everything.keys())
|
||
|
|
||
|
for key in trending_data.claims:
|
||
|
trajectories[key].append(trending_data.claims[key]["trending_score"]\
|
||
|
/get_time_boost(height))
|
||
|
|
||
|
dbc.close()
|
||
|
|
||
|
# pylint: disable=C0415
|
||
|
import matplotlib.pyplot as plt
|
||
|
for key in trending_data.claims:
|
||
|
plt.plot(trajectories[key], label=key)
|
||
|
plt.legend()
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
# One global instance
|
||
|
# pylint: disable=C0103
|
||
|
trending_data = TrendingData()
|
||
|
|
||
|
def run(db, height, final_height, recalculate_claim_hashes):
|
||
|
|
||
|
if height < final_height - 5*HALF_LIFE:
|
||
|
trending_log("Skipping variable_decay trending at block {h}.\n".format(h=height))
|
||
|
return
|
||
|
|
||
|
start = time.time()
|
||
|
|
||
|
trending_log("Calculating variable_decay trending at block {h}.\n".format(h=height))
|
||
|
trending_log(" Length of trending data = {l}.\n"\
|
||
|
.format(l=len(trending_data.claims)))
|
||
|
|
||
|
# Renormalise trending scores and mark all as having changed
|
||
|
if height % RENORM_INTERVAL == 0:
|
||
|
trending_log(" Renormalising trending scores...")
|
||
|
|
||
|
keys = trending_data.claims.keys()
|
||
|
trending_data.whales = set([])
|
||
|
for key in keys:
|
||
|
if trending_data.claims[key]["trending_score"] != 0.0:
|
||
|
trending_data.claims[key]["trending_score"] *= DECAY_PER_RENORM
|
||
|
trending_data.claims[key]["changed"] = True
|
||
|
|
||
|
# Tiny becomes zero
|
||
|
if abs(trending_data.claims[key]["trending_score"]) < 1E-3:
|
||
|
trending_data.claims[key]["trending_score"] = 0.0
|
||
|
|
||
|
# Re-mark whales
|
||
|
if trending_data.claims[key]["trending_score"] >= WHALE_THRESHOLD*get_time_boost(height):
|
||
|
trending_data.add_whale(key)
|
||
|
|
||
|
trending_log("done.\n")
|
||
|
|
||
|
|
||
|
# Regular message.
|
||
|
trending_log(" Reading total_amounts from db and updating"\
|
||
|
+ " trending scores in RAM...")
|
||
|
|
||
|
# Update claims from db
|
||
|
if not trending_data.initialised:
|
||
|
|
||
|
trending_log("initial load...")
|
||
|
# On fresh launch
|
||
|
for row in db.execute("""
|
||
|
SELECT claim_hash, trending_mixed,
|
||
|
(amount + support_amount)
|
||
|
AS total_amount
|
||
|
FROM claim;
|
||
|
"""):
|
||
|
trending_data.insert_claim_from_load(height, row[0], row[1], 1E-8*row[2])
|
||
|
trending_data.initialised = True
|
||
|
else:
|
||
|
for row in db.execute(f"""
|
||
|
SELECT claim_hash,
|
||
|
(amount + support_amount)
|
||
|
AS total_amount
|
||
|
FROM claim
|
||
|
WHERE claim_hash IN
|
||
|
({','.join('?' for _ in recalculate_claim_hashes)});
|
||
|
""", recalculate_claim_hashes):
|
||
|
trending_data.update_claim(height, row[0], 1E-8*row[1])
|
||
|
|
||
|
# Apply pending spikes
|
||
|
trending_data.apply_spikes(height)
|
||
|
|
||
|
trending_log("done.\n")
|
||
|
|
||
|
|
||
|
# Write trending scores to DB
|
||
|
if height % SAVE_INTERVAL == 0:
|
||
|
|
||
|
trending_log(" Finding and processing whales...")
|
||
|
trending_log(str(len(trending_data.whales)) + " whales found...")
|
||
|
trending_data.process_whales(height)
|
||
|
trending_log("done.\n")
|
||
|
|
||
|
trending_log(" Writing trending scores to db...")
|
||
|
|
||
|
the_list = []
|
||
|
keys = trending_data.claims.keys()
|
||
|
|
||
|
for key in keys:
|
||
|
if trending_data.claims[key]["changed"]:
|
||
|
the_list.append((trending_data.claims[key]["trending_score"], key))
|
||
|
trending_data.claims[key]["changed"] = False
|
||
|
|
||
|
trending_log("{n} scores to write...".format(n=len(the_list)))
|
||
|
|
||
|
db.executemany("UPDATE claim SET trending_mixed=? WHERE claim_hash=?;",
|
||
|
the_list)
|
||
|
|
||
|
trending_log("done.\n")
|
||
|
|
||
|
trending_log("Trending operations took {time} seconds.\n\n"\
|
||
|
.format(time=time.time() - start))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
test_trending()
|