lbry-sdk/lbry/dht/protocol/routing_table.py

335 lines
14 KiB
Python
Raw Normal View History

2019-01-22 18:49:43 +01:00
import asyncio
import random
import logging
import typing
import itertools
from prometheus_client import Gauge
2019-06-21 02:55:47 +02:00
from lbry.dht import constants
from lbry.dht.protocol.distance import Distance
2019-01-22 18:49:43 +01:00
if typing.TYPE_CHECKING:
2019-06-21 02:55:47 +02:00
from lbry.dht.peer import KademliaPeer, PeerManager
2019-01-22 18:49:43 +01:00
log = logging.getLogger(__name__)
class KBucket:
"""
Kademlia K-bucket implementation.
"""
peers_in_routing_table_metric = Gauge(
"peers_in_routing_table", "Number of peers on routing table", namespace="dht_node",
labelnames=("scope",)
)
2019-01-22 18:49:43 +01:00
def __init__(self, peer_manager: 'PeerManager', range_min: int, range_max: int, node_id: bytes):
"""
@param range_min: The lower boundary for the range in the n-bit ID
space covered by this k-bucket
@param range_max: The upper boundary for the range in the ID space
covered by this k-bucket
"""
self._peer_manager = peer_manager
self.last_accessed = 0
self.range_min = range_min
self.range_max = range_max
self.peers: typing.List['KademliaPeer'] = []
self._node_id = node_id
self._distance_to_self = Distance(node_id)
2019-01-22 18:49:43 +01:00
def add_peer(self, peer: 'KademliaPeer') -> bool:
""" Add contact to _contact list in the right order. This will move the
contact to the end of the k-bucket if it is already present.
@raise kademlia.kbucket.BucketFull: Raised when the bucket is full and
the contact isn't in the bucket
already
@param peer: The contact to add
@type peer: dht.contact._Contact
"""
if peer in self.peers:
# Move the existing contact to the end of the list
# - using the new contact to allow add-on data
# (e.g. optimization-specific stuff) to pe updated as well
self.peers.remove(peer)
self.peers.append(peer)
return True
2019-02-21 01:24:44 +01:00
else:
2021-08-21 04:36:35 +02:00
for i, _ in enumerate(self.peers):
2020-01-03 05:31:28 +01:00
local_peer = self.peers[i]
if local_peer.node_id == peer.node_id:
self.peers.remove(local_peer)
2019-02-21 01:24:44 +01:00
self.peers.append(peer)
return True
2020-01-03 04:57:28 +01:00
if len(self.peers) < constants.K:
2019-01-22 18:49:43 +01:00
self.peers.append(peer)
self.peers_in_routing_table_metric.labels("global").inc()
2019-01-22 18:49:43 +01:00
return True
else:
return False
# raise BucketFull("No space in bucket to insert contact")
def get_peer(self, node_id: bytes) -> 'KademliaPeer':
for peer in self.peers:
if peer.node_id == node_id:
return peer
raise IndexError(node_id)
def get_peers(self, count=-1, exclude_contact=None, sort_distance_to=None) -> typing.List['KademliaPeer']:
""" Returns a list containing up to the first count number of contacts
@param count: The amount of contacts to return (if 0 or less, return
all contacts)
@type count: int
@param exclude_contact: A node node_id to exclude; if this contact is in
the list of returned values, it will be
discarded before returning. If a C{str} is
passed as this argument, it must be the
contact's ID.
@type exclude_contact: str
@param sort_distance_to: Sort distance to the node_id, defaulting to the parent node node_id. If False don't
sort the contacts
@raise IndexError: If the number of requested contacts is too large
@return: Return up to the first count number of contacts in a list
If no contacts are present an empty is returned
@rtype: list
"""
peers = [peer for peer in self.peers if peer.node_id != exclude_contact]
# Return all contacts in bucket
if count <= 0:
count = len(peers)
# Get current contact number
current_len = len(peers)
# If count greater than k - return only k contacts
2020-01-03 04:57:28 +01:00
if count > constants.K:
count = constants.K
2019-01-22 18:49:43 +01:00
if not current_len:
return peers
if sort_distance_to is False:
pass
else:
sort_distance_to = sort_distance_to or self._node_id
peers.sort(key=lambda c: Distance(sort_distance_to)(c.node_id))
return peers[:min(current_len, count)]
def get_bad_or_unknown_peers(self) -> typing.List['KademliaPeer']:
peer = self.get_peers(sort_distance_to=False)
return [
peer for peer in peer
if self._peer_manager.contact_triple_is_good(peer.node_id, peer.address, peer.udp_port) is not True
]
def remove_peer(self, peer: 'KademliaPeer') -> None:
self.peers.remove(peer)
self.peers_in_routing_table_metric.labels("global").dec()
2019-01-22 18:49:43 +01:00
def key_in_range(self, key: bytes) -> bool:
""" Tests whether the specified key (i.e. node ID) is in the range
of the n-bit ID space covered by this k-bucket (in otherwords, it
returns whether or not the specified key should be placed in this
k-bucket)
@param key: The key to test
@type key: str or int
@return: C{True} if the key is in this k-bucket's range, or C{False}
if not.
@rtype: bool
"""
return self.range_min <= self._distance_to_self(key) < self.range_max
2019-01-22 18:49:43 +01:00
def __len__(self) -> int:
return len(self.peers)
def __contains__(self, item) -> bool:
return item in self.peers
class TreeRoutingTable:
""" This class implements a routing table used by a Node class.
The Kademlia routing table is a binary tree whose leaves are k-buckets,
where each k-bucket contains nodes with some common prefix of their IDs.
This prefix is the k-bucket's position in the binary tree; it therefore
covers some range of ID values, and together all of the k-buckets cover
the entire n-bit ID (or key) space (with no overlap).
@note: In this implementation, nodes in the tree (the k-buckets) are
added dynamically, as needed; this technique is described in the 13-page
version of the Kademlia paper, in section 2.4. It does, however, use the
ping RPC-based k-bucket eviction algorithm described in section 2.2 of
that paper.
"""
buckets_in_routing_table_metric = Gauge(
"buckets_in_routing_table", "Number of buckets on routing table", namespace="dht_node",
labelnames=("scope",)
)
2019-01-22 18:49:43 +01:00
2019-08-02 19:14:41 +02:00
def __init__(self, loop: asyncio.AbstractEventLoop, peer_manager: 'PeerManager', parent_node_id: bytes,
2020-01-03 04:57:28 +01:00
split_buckets_under_index: int = constants.SPLIT_BUCKETS_UNDER_INDEX):
2019-01-22 18:49:43 +01:00
self._loop = loop
self._peer_manager = peer_manager
self._parent_node_id = parent_node_id
self._split_buckets_under_index = split_buckets_under_index
2019-01-22 18:49:43 +01:00
self.buckets: typing.List[KBucket] = [
KBucket(
2020-01-03 04:57:28 +01:00
self._peer_manager, range_min=0, range_max=2 ** constants.HASH_BITS, node_id=self._parent_node_id
2019-01-22 18:49:43 +01:00
)
]
def get_peers(self) -> typing.List['KademliaPeer']:
return list(itertools.chain.from_iterable(map(lambda bucket: bucket.peers, self.buckets)))
def should_split(self, bucket_index: int, to_add: bytes) -> bool:
# https://stackoverflow.com/questions/32129978/highly-unbalanced-kademlia-routing-table/32187456#32187456
if bucket_index < self._split_buckets_under_index:
2019-01-22 18:49:43 +01:00
return True
contacts = self.get_peers()
distance = Distance(self._parent_node_id)
contacts.sort(key=lambda c: distance(c.node_id))
2020-01-03 04:57:28 +01:00
kth_contact = contacts[-1] if len(contacts) < constants.K else contacts[constants.K - 1]
2019-01-22 18:49:43 +01:00
return distance(to_add) < distance(kth_contact.node_id)
def find_close_peers(self, key: bytes, count: typing.Optional[int] = None,
sender_node_id: typing.Optional[bytes] = None) -> typing.List['KademliaPeer']:
exclude = [self._parent_node_id]
if sender_node_id:
exclude.append(sender_node_id)
2020-01-03 04:57:28 +01:00
count = count or constants.K
2019-01-22 18:49:43 +01:00
distance = Distance(key)
contacts = self.get_peers()
contacts = [c for c in contacts if c.node_id not in exclude]
if contacts:
contacts.sort(key=lambda c: distance(c.node_id))
return contacts[:min(count, len(contacts))]
return []
def get_peer(self, contact_id: bytes) -> 'KademliaPeer':
"""
@raise IndexError: No contact with the specified contact ID is known
by this node
"""
return self.buckets[self.kbucket_index(contact_id)].get_peer(contact_id)
def get_refresh_list(self, start_index: int = 0, force: bool = False) -> typing.List[bytes]:
bucket_index = start_index
refresh_ids = []
now = int(self._loop.time())
for bucket in self.buckets[start_index:]:
2020-01-03 04:57:28 +01:00
if force or now - bucket.last_accessed >= constants.REFRESH_INTERVAL:
2019-01-22 18:49:43 +01:00
to_search = self.midpoint_id_in_bucket_range(bucket_index)
refresh_ids.append(to_search)
bucket_index += 1
return refresh_ids
def remove_peer(self, peer: 'KademliaPeer') -> None:
if not peer.node_id:
return
bucket_index = self.kbucket_index(peer.node_id)
try:
self.buckets[bucket_index].remove_peer(peer)
except ValueError:
return
def touch_kbucket(self, key: bytes) -> None:
self.touch_kbucket_by_index(self.kbucket_index(key))
def touch_kbucket_by_index(self, bucket_index: int):
self.buckets[bucket_index].last_accessed = int(self._loop.time())
def kbucket_index(self, key: bytes) -> int:
i = 0
for bucket in self.buckets:
if bucket.key_in_range(key):
return i
else:
i += 1
return i
def random_id_in_bucket_range(self, bucket_index: int) -> bytes:
random_id = int(random.randrange(self.buckets[bucket_index].range_min, self.buckets[bucket_index].range_max))
return Distance(
self._parent_node_id
2020-01-03 04:57:28 +01:00
)(random_id.to_bytes(constants.HASH_LENGTH, 'big')).to_bytes(constants.HASH_LENGTH, 'big')
2019-01-22 18:49:43 +01:00
def midpoint_id_in_bucket_range(self, bucket_index: int) -> bytes:
half = int((self.buckets[bucket_index].range_max - self.buckets[bucket_index].range_min) // 2)
return Distance(self._parent_node_id)(
2020-01-03 04:57:28 +01:00
int(self.buckets[bucket_index].range_min + half).to_bytes(constants.HASH_LENGTH, 'big')
).to_bytes(constants.HASH_LENGTH, 'big')
2019-01-22 18:49:43 +01:00
def split_bucket(self, old_bucket_index: int) -> None:
""" Splits the specified k-bucket into two new buckets which together
cover the same range in the key/ID space
@param old_bucket_index: The index of k-bucket to split (in this table's
list of k-buckets)
@type old_bucket_index: int
"""
# Resize the range of the current (old) k-bucket
old_bucket = self.buckets[old_bucket_index]
split_point = old_bucket.range_max - (old_bucket.range_max - old_bucket.range_min) // 2
# Create a new k-bucket to cover the range split off from the old bucket
new_bucket = KBucket(self._peer_manager, split_point, old_bucket.range_max, self._parent_node_id)
old_bucket.range_max = split_point
# Now, add the new bucket into the routing table tree
self.buckets.insert(old_bucket_index + 1, new_bucket)
# Finally, copy all nodes that belong to the new k-bucket into it...
for contact in old_bucket.peers:
if new_bucket.key_in_range(contact.node_id):
new_bucket.add_peer(contact)
# ...and remove them from the old bucket
for contact in new_bucket.peers:
old_bucket.remove_peer(contact)
self.buckets_in_routing_table_metric.labels("global").set(len(self.buckets))
2019-01-22 18:49:43 +01:00
def join_buckets(self):
if len(self.buckets) == 1:
return
2020-01-03 05:31:28 +01:00
to_pop = [i for i, bucket in enumerate(self.buckets) if len(bucket) == 0]
2019-01-22 18:49:43 +01:00
if not to_pop:
return
log.info("join buckets %i", len(to_pop))
bucket_index_to_pop = to_pop[0]
assert len(self.buckets[bucket_index_to_pop]) == 0
can_go_lower = bucket_index_to_pop - 1 >= 0
can_go_higher = bucket_index_to_pop + 1 < len(self.buckets)
assert can_go_higher or can_go_lower
bucket = self.buckets[bucket_index_to_pop]
if can_go_lower and can_go_higher:
midpoint = ((bucket.range_max - bucket.range_min) // 2) + bucket.range_min
self.buckets[bucket_index_to_pop - 1].range_max = midpoint - 1
self.buckets[bucket_index_to_pop + 1].range_min = midpoint
elif can_go_lower:
self.buckets[bucket_index_to_pop - 1].range_max = bucket.range_max
elif can_go_higher:
self.buckets[bucket_index_to_pop + 1].range_min = bucket.range_min
self.buckets.remove(bucket)
self.buckets_in_routing_table_metric.labels("global").set(len(self.buckets))
2019-01-22 18:49:43 +01:00
return self.join_buckets()
def contact_in_routing_table(self, address_tuple: typing.Tuple[str, int]) -> bool:
for bucket in self.buckets:
for contact in bucket.get_peers(sort_distance_to=False):
if address_tuple[0] == contact.address and address_tuple[1] == contact.udp_port:
return True
return False
def buckets_with_contacts(self) -> int:
count = 0
for bucket in self.buckets:
2020-01-03 05:31:28 +01:00
if len(bucket) > 0:
2019-01-22 18:49:43 +01:00
count += 1
return count