variable decay

This commit is contained in:
Brendon J. Brewer 2020-03-12 10:33:15 +13:00
parent c9092cd1c7
commit 5f043b9a78
2 changed files with 434 additions and 2 deletions

View file

@ -1,8 +1,9 @@
from . import zscore from . import zscore
from . import ar from . import ar
from . import variable_decay
TRENDING_ALGORITHMS = { TRENDING_ALGORITHMS = {
'zscore': zscore, 'zscore': zscore,
'ar': ar 'ar': ar,
'variable_decay': variable_decay
} }

View file

@ -0,0 +1,431 @@
"""
Delayed AR with variable decay rate.
The spike height function is also simpler.
"""
import copy
import time
import apsw
# Half life in blocks *for lower LBC claims* (it's shorter for whale claims)
HALF_LIFE = 200
# Whale threshold (higher -> less DB writing)
WHALE_THRESHOLD = 3.0
# Decay coefficient per block
DECAY = 0.5**(1.0/HALF_LIFE)
# How frequently to write trending values to the db
SAVE_INTERVAL = 10
# Renormalisation interval
RENORM_INTERVAL = 1000
# Assertion
assert RENORM_INTERVAL % SAVE_INTERVAL == 0
# Decay coefficient per renormalisation interval
DECAY_PER_RENORM = DECAY**(RENORM_INTERVAL)
# Log trending calculations?
TRENDING_LOG = True
def install(connection):
"""
Install the trending algorithm.
"""
check_trending_values(connection)
if TRENDING_LOG:
f = open("trending_variable_decay.log", "a")
f.close()
# Stub
CREATE_TREND_TABLE = ""
def check_trending_values(connection):
"""
If the trending values appear to be based on the zscore algorithm,
reset them. This will allow resyncing from a standard snapshot.
"""
c = connection.cursor()
needs_reset = False
for row in c.execute("SELECT COUNT(*) num FROM claim WHERE trending_global <> 0;"):
if row[0] != 0:
needs_reset = True
break
if needs_reset:
print("Resetting some columns. This might take a while...", flush=True, end="")
c.execute(""" BEGIN;
UPDATE claim SET trending_group = 0;
UPDATE claim SET trending_mixed = 0;
UPDATE claim SET trending_global = 0;
UPDATE claim SET trending_local = 0;
COMMIT;""")
print("done.")
def spike_height(x, x_old):
"""
Compute the size of a trending spike (normed - constant units).
"""
# Sign of trending spike
sign = 1.0
if x < x_old:
sign = -1.0
# Magnitude
mag = abs(x**0.25 - x_old**0.25)
# Minnow boost
mag *= 1.0 + 2E4/(x + 100.0)**2
return sign*mag
def get_time_boost(height):
"""
Return the time boost at a given height.
"""
return 1.0/DECAY**(height % RENORM_INTERVAL)
def trending_log(s):
"""
Log a string.
"""
if TRENDING_LOG:
fout = open("trending_variable_decay.log", "a")
fout.write(s)
fout.flush()
fout.close()
class TrendingData:
"""
An object of this class holds trending data
"""
def __init__(self):
# Dict from claim id to some trending info.
# Units are TIME VARIABLE in here
self.claims = {}
# Claims with >= WHALE_THRESHOLD LBC total amount
self.whales = set([])
# Have all claims been read from db yet?
self.initialised = False
# List of pending spikes.
# Units are CONSTANT in here
self.pending_spikes = []
def insert_claim_from_load(self, height, claim_hash, trending_score, total_amount):
assert not self.initialised
self.claims[claim_hash] = {"trending_score": trending_score,
"total_amount": total_amount,
"changed": False}
if trending_score >= WHALE_THRESHOLD*get_time_boost(height):
self.add_whale(claim_hash)
def add_whale(self, claim_hash):
self.whales.add(claim_hash)
def apply_spikes(self, height):
"""
Apply all pending spikes that are due at this height.
Apply with time boost ON.
"""
time_boost = get_time_boost(height)
for spike in self.pending_spikes:
if spike["height"] > height:
# Ignore
pass
if spike["height"] == height:
# Apply
self.claims[spike["claim_hash"]]["trending_score"] += time_boost*spike["size"]
self.claims[spike["claim_hash"]]["changed"] = True
if self.claims[spike["claim_hash"]]["trending_score"] >= WHALE_THRESHOLD*time_boost:
self.add_whale(spike["claim_hash"])
if spike["claim_hash"] in self.whales and \
self.claims[spike["claim_hash"]]["trending_score"] < WHALE_THRESHOLD*time_boost:
self.whales.remove(spike["claim_hash"])
# Keep only future spikes
self.pending_spikes = [s for s in self.pending_spikes \
if s["height"] > height]
def update_claim(self, height, claim_hash, total_amount):
"""
Update trending data for a claim, given its new total amount.
"""
assert self.initialised
# Extract existing total amount and trending score
# or use starting values if the claim is new
if claim_hash in self.claims:
old_state = copy.deepcopy(self.claims[claim_hash])
else:
old_state = {"trending_score": 0.0,
"total_amount": 0.0,
"changed": False}
# Calculate LBC change
change = total_amount - old_state["total_amount"]
# Modify data if there was an LBC change
if change != 0.0:
spike = spike_height(total_amount,
old_state["total_amount"])
delay = min(int((total_amount + 1E-8)**0.4), HALF_LIFE)
if change < 0.0:
# How big would the spike be for the inverse movement?
reverse_spike = spike_height(old_state["total_amount"], total_amount)
# Remove that much spike from future pending ones
for future_spike in self.pending_spikes:
if future_spike["claim_hash"] == claim_hash:
if reverse_spike >= future_spike["size"]:
reverse_spike -= future_spike["size"]
future_spike["size"] = 0.0
elif reverse_spike > 0.0:
future_spike["size"] -= reverse_spike
reverse_spike = 0.0
delay = 0
spike = -reverse_spike
self.pending_spikes.append({"height": height + delay,
"claim_hash": claim_hash,
"size": spike})
self.claims[claim_hash] = {"total_amount": total_amount,
"trending_score": old_state["trending_score"],
"changed": False}
def process_whales(self, height):
"""
Whale claims decay faster.
"""
if height % SAVE_INTERVAL != 0:
return
for claim_hash in self.whales:
trending_normed = self.claims[claim_hash]["trending_score"]/get_time_boost(height)
# Overall multiplication factor for decay rate
decay_rate_factor = trending_normed/WHALE_THRESHOLD
# The -1 is because this is just the *extra* part being applied
factor = (DECAY**SAVE_INTERVAL)**(decay_rate_factor - 1.0)
# print(claim_hash, trending_normed, decay_rate_factor)
self.claims[claim_hash]["trending_score"] *= factor
self.claims[claim_hash]["changed"] = True
def test_trending():
"""
Quick trending test for claims with different support patterns.
Actually use the run() function.
"""
# Create a fake "claims.db" for testing
# pylint: disable=I1101
dbc = apsw.Connection(":memory:")
db = dbc.cursor()
# Create table
db.execute("""
BEGIN;
CREATE TABLE claim (claim_hash TEXT PRIMARY KEY,
amount REAL NOT NULL DEFAULT 0.0,
support_amount REAL NOT NULL DEFAULT 0.0,
trending_mixed REAL NOT NULL DEFAULT 0.0);
COMMIT;
""")
# Insert initial states of claims
everything = {"huge_whale": 0.01,
"huge_whale_botted": 0.01,
"medium_whale": 0.01,
"small_whale": 0.01,
"minnow": 0.01}
def to_list_of_tuples(stuff):
l = []
for key in stuff:
l.append((key, stuff[key]))
return l
db.executemany("""
INSERT INTO claim (claim_hash, amount) VALUES (?, 1E8*?);
""", to_list_of_tuples(everything))
height = 0
run(db, height, height, everything.keys())
# Save trajectories for plotting
trajectories = {}
for key in trending_data.claims:
trajectories[key] = [trending_data.claims[key]["trending_score"]]
# Main loop
for height in range(1, 1000):
# One-off supports
if height == 1:
everything["huge_whale"] += 5E5
everything["medium_whale"] += 5E4
everything["small_whale"] += 5E3
# Every block
if height < 500:
everything["huge_whale_botted"] += 5E5/500
everything["minnow"] += 1
# Remove supports
if height == 500:
for key in everything:
everything[key] = 0.01
# Whack into the db
db.executemany("""
UPDATE claim SET amount = 1E8*? WHERE claim_hash = ?;
""", [(y, x) for (x, y) in to_list_of_tuples(everything)])
# Call run()
run(db, height, height, everything.keys())
for key in trending_data.claims:
trajectories[key].append(trending_data.claims[key]["trending_score"]\
/get_time_boost(height))
dbc.close()
# pylint: disable=C0415
import matplotlib.pyplot as plt
for key in trending_data.claims:
plt.plot(trajectories[key], label=key)
plt.legend()
plt.show()
# One global instance
# pylint: disable=C0103
trending_data = TrendingData()
def run(db, height, final_height, recalculate_claim_hashes):
if height < final_height - 5*HALF_LIFE:
trending_log("Skipping variable_decay trending at block {h}.\n".format(h=height))
return
start = time.time()
trending_log("Calculating variable_decay trending at block {h}.\n".format(h=height))
trending_log(" Length of trending data = {l}.\n"\
.format(l=len(trending_data.claims)))
# Renormalise trending scores and mark all as having changed
if height % RENORM_INTERVAL == 0:
trending_log(" Renormalising trending scores...")
keys = trending_data.claims.keys()
trending_data.whales = set([])
for key in keys:
if trending_data.claims[key]["trending_score"] != 0.0:
trending_data.claims[key]["trending_score"] *= DECAY_PER_RENORM
trending_data.claims[key]["changed"] = True
# Tiny becomes zero
if abs(trending_data.claims[key]["trending_score"]) < 1E-3:
trending_data.claims[key]["trending_score"] = 0.0
# Re-mark whales
if trending_data.claims[key]["trending_score"] >= WHALE_THRESHOLD*get_time_boost(height):
trending_data.add_whale(key)
trending_log("done.\n")
# Regular message.
trending_log(" Reading total_amounts from db and updating"\
+ " trending scores in RAM...")
# Update claims from db
if not trending_data.initialised:
trending_log("initial load...")
# On fresh launch
for row in db.execute("""
SELECT claim_hash, trending_mixed,
(amount + support_amount)
AS total_amount
FROM claim;
"""):
trending_data.insert_claim_from_load(height, row[0], row[1], 1E-8*row[2])
trending_data.initialised = True
else:
for row in db.execute(f"""
SELECT claim_hash,
(amount + support_amount)
AS total_amount
FROM claim
WHERE claim_hash IN
({','.join('?' for _ in recalculate_claim_hashes)});
""", recalculate_claim_hashes):
trending_data.update_claim(height, row[0], 1E-8*row[1])
# Apply pending spikes
trending_data.apply_spikes(height)
trending_log("done.\n")
# Write trending scores to DB
if height % SAVE_INTERVAL == 0:
trending_log(" Finding and processing whales...")
trending_log(str(len(trending_data.whales)) + " whales found...")
trending_data.process_whales(height)
trending_log("done.\n")
trending_log(" Writing trending scores to db...")
the_list = []
keys = trending_data.claims.keys()
for key in keys:
if trending_data.claims[key]["changed"]:
the_list.append((trending_data.claims[key]["trending_score"], key))
trending_data.claims[key]["changed"] = False
trending_log("{n} scores to write...".format(n=len(the_list)))
db.executemany("UPDATE claim SET trending_mixed=? WHERE claim_hash=?;",
the_list)
trending_log("done.\n")
trending_log("Trending operations took {time} seconds.\n\n"\
.format(time=time.time() - start))
if __name__ == "__main__":
test_trending()