forked from LBRYCommunity/lbry-sdk
variable decay
This commit is contained in:
parent
c9092cd1c7
commit
5f043b9a78
2 changed files with 434 additions and 2 deletions
|
@ -1,8 +1,9 @@
|
|||
from . import zscore
|
||||
from . import ar
|
||||
|
||||
from . import variable_decay
|
||||
|
||||
TRENDING_ALGORITHMS = {
|
||||
'zscore': zscore,
|
||||
'ar': ar
|
||||
'ar': ar,
|
||||
'variable_decay': variable_decay
|
||||
}
|
||||
|
|
431
lbry/wallet/server/db/trending/variable_decay.py
Normal file
431
lbry/wallet/server/db/trending/variable_decay.py
Normal file
|
@ -0,0 +1,431 @@
|
|||
"""
|
||||
Delayed AR with variable decay rate.
|
||||
|
||||
The spike height function is also simpler.
|
||||
"""
|
||||
|
||||
import copy
|
||||
import time
|
||||
import apsw
|
||||
|
||||
# Half life in blocks *for lower LBC claims* (it's shorter for whale claims)
|
||||
HALF_LIFE = 200
|
||||
|
||||
# Whale threshold (higher -> less DB writing)
|
||||
WHALE_THRESHOLD = 3.0
|
||||
|
||||
# Decay coefficient per block
|
||||
DECAY = 0.5**(1.0/HALF_LIFE)
|
||||
|
||||
# How frequently to write trending values to the db
|
||||
SAVE_INTERVAL = 10
|
||||
|
||||
# Renormalisation interval
|
||||
RENORM_INTERVAL = 1000
|
||||
|
||||
# Assertion
|
||||
assert RENORM_INTERVAL % SAVE_INTERVAL == 0
|
||||
|
||||
# Decay coefficient per renormalisation interval
|
||||
DECAY_PER_RENORM = DECAY**(RENORM_INTERVAL)
|
||||
|
||||
# Log trending calculations?
|
||||
TRENDING_LOG = True
|
||||
|
||||
|
||||
def install(connection):
|
||||
"""
|
||||
Install the trending algorithm.
|
||||
"""
|
||||
check_trending_values(connection)
|
||||
|
||||
if TRENDING_LOG:
|
||||
f = open("trending_variable_decay.log", "a")
|
||||
f.close()
|
||||
|
||||
# Stub
|
||||
CREATE_TREND_TABLE = ""
|
||||
|
||||
|
||||
def check_trending_values(connection):
|
||||
"""
|
||||
If the trending values appear to be based on the zscore algorithm,
|
||||
reset them. This will allow resyncing from a standard snapshot.
|
||||
"""
|
||||
c = connection.cursor()
|
||||
needs_reset = False
|
||||
for row in c.execute("SELECT COUNT(*) num FROM claim WHERE trending_global <> 0;"):
|
||||
if row[0] != 0:
|
||||
needs_reset = True
|
||||
break
|
||||
|
||||
if needs_reset:
|
||||
print("Resetting some columns. This might take a while...", flush=True, end="")
|
||||
c.execute(""" BEGIN;
|
||||
UPDATE claim SET trending_group = 0;
|
||||
UPDATE claim SET trending_mixed = 0;
|
||||
UPDATE claim SET trending_global = 0;
|
||||
UPDATE claim SET trending_local = 0;
|
||||
COMMIT;""")
|
||||
print("done.")
|
||||
|
||||
|
||||
def spike_height(x, x_old):
|
||||
"""
|
||||
Compute the size of a trending spike (normed - constant units).
|
||||
"""
|
||||
|
||||
# Sign of trending spike
|
||||
sign = 1.0
|
||||
if x < x_old:
|
||||
sign = -1.0
|
||||
|
||||
# Magnitude
|
||||
mag = abs(x**0.25 - x_old**0.25)
|
||||
|
||||
# Minnow boost
|
||||
mag *= 1.0 + 2E4/(x + 100.0)**2
|
||||
|
||||
return sign*mag
|
||||
|
||||
|
||||
|
||||
def get_time_boost(height):
|
||||
"""
|
||||
Return the time boost at a given height.
|
||||
"""
|
||||
return 1.0/DECAY**(height % RENORM_INTERVAL)
|
||||
|
||||
|
||||
def trending_log(s):
|
||||
"""
|
||||
Log a string.
|
||||
"""
|
||||
if TRENDING_LOG:
|
||||
fout = open("trending_variable_decay.log", "a")
|
||||
fout.write(s)
|
||||
fout.flush()
|
||||
fout.close()
|
||||
|
||||
class TrendingData:
|
||||
"""
|
||||
An object of this class holds trending data
|
||||
"""
|
||||
def __init__(self):
|
||||
|
||||
# Dict from claim id to some trending info.
|
||||
# Units are TIME VARIABLE in here
|
||||
self.claims = {}
|
||||
|
||||
# Claims with >= WHALE_THRESHOLD LBC total amount
|
||||
self.whales = set([])
|
||||
|
||||
# Have all claims been read from db yet?
|
||||
self.initialised = False
|
||||
|
||||
# List of pending spikes.
|
||||
# Units are CONSTANT in here
|
||||
self.pending_spikes = []
|
||||
|
||||
def insert_claim_from_load(self, height, claim_hash, trending_score, total_amount):
|
||||
assert not self.initialised
|
||||
self.claims[claim_hash] = {"trending_score": trending_score,
|
||||
"total_amount": total_amount,
|
||||
"changed": False}
|
||||
|
||||
if trending_score >= WHALE_THRESHOLD*get_time_boost(height):
|
||||
self.add_whale(claim_hash)
|
||||
|
||||
def add_whale(self, claim_hash):
|
||||
self.whales.add(claim_hash)
|
||||
|
||||
def apply_spikes(self, height):
|
||||
"""
|
||||
Apply all pending spikes that are due at this height.
|
||||
Apply with time boost ON.
|
||||
"""
|
||||
time_boost = get_time_boost(height)
|
||||
|
||||
for spike in self.pending_spikes:
|
||||
if spike["height"] > height:
|
||||
# Ignore
|
||||
pass
|
||||
if spike["height"] == height:
|
||||
# Apply
|
||||
self.claims[spike["claim_hash"]]["trending_score"] += time_boost*spike["size"]
|
||||
self.claims[spike["claim_hash"]]["changed"] = True
|
||||
|
||||
if self.claims[spike["claim_hash"]]["trending_score"] >= WHALE_THRESHOLD*time_boost:
|
||||
self.add_whale(spike["claim_hash"])
|
||||
if spike["claim_hash"] in self.whales and \
|
||||
self.claims[spike["claim_hash"]]["trending_score"] < WHALE_THRESHOLD*time_boost:
|
||||
self.whales.remove(spike["claim_hash"])
|
||||
|
||||
|
||||
# Keep only future spikes
|
||||
self.pending_spikes = [s for s in self.pending_spikes \
|
||||
if s["height"] > height]
|
||||
|
||||
|
||||
|
||||
|
||||
def update_claim(self, height, claim_hash, total_amount):
|
||||
"""
|
||||
Update trending data for a claim, given its new total amount.
|
||||
"""
|
||||
assert self.initialised
|
||||
|
||||
# Extract existing total amount and trending score
|
||||
# or use starting values if the claim is new
|
||||
if claim_hash in self.claims:
|
||||
old_state = copy.deepcopy(self.claims[claim_hash])
|
||||
else:
|
||||
old_state = {"trending_score": 0.0,
|
||||
"total_amount": 0.0,
|
||||
"changed": False}
|
||||
|
||||
# Calculate LBC change
|
||||
change = total_amount - old_state["total_amount"]
|
||||
|
||||
# Modify data if there was an LBC change
|
||||
if change != 0.0:
|
||||
spike = spike_height(total_amount,
|
||||
old_state["total_amount"])
|
||||
delay = min(int((total_amount + 1E-8)**0.4), HALF_LIFE)
|
||||
|
||||
if change < 0.0:
|
||||
|
||||
# How big would the spike be for the inverse movement?
|
||||
reverse_spike = spike_height(old_state["total_amount"], total_amount)
|
||||
|
||||
# Remove that much spike from future pending ones
|
||||
for future_spike in self.pending_spikes:
|
||||
if future_spike["claim_hash"] == claim_hash:
|
||||
if reverse_spike >= future_spike["size"]:
|
||||
reverse_spike -= future_spike["size"]
|
||||
future_spike["size"] = 0.0
|
||||
elif reverse_spike > 0.0:
|
||||
future_spike["size"] -= reverse_spike
|
||||
reverse_spike = 0.0
|
||||
|
||||
delay = 0
|
||||
spike = -reverse_spike
|
||||
|
||||
self.pending_spikes.append({"height": height + delay,
|
||||
"claim_hash": claim_hash,
|
||||
"size": spike})
|
||||
|
||||
self.claims[claim_hash] = {"total_amount": total_amount,
|
||||
"trending_score": old_state["trending_score"],
|
||||
"changed": False}
|
||||
|
||||
def process_whales(self, height):
|
||||
"""
|
||||
Whale claims decay faster.
|
||||
"""
|
||||
if height % SAVE_INTERVAL != 0:
|
||||
return
|
||||
|
||||
for claim_hash in self.whales:
|
||||
trending_normed = self.claims[claim_hash]["trending_score"]/get_time_boost(height)
|
||||
|
||||
# Overall multiplication factor for decay rate
|
||||
decay_rate_factor = trending_normed/WHALE_THRESHOLD
|
||||
|
||||
# The -1 is because this is just the *extra* part being applied
|
||||
factor = (DECAY**SAVE_INTERVAL)**(decay_rate_factor - 1.0)
|
||||
# print(claim_hash, trending_normed, decay_rate_factor)
|
||||
self.claims[claim_hash]["trending_score"] *= factor
|
||||
self.claims[claim_hash]["changed"] = True
|
||||
|
||||
|
||||
def test_trending():
|
||||
"""
|
||||
Quick trending test for claims with different support patterns.
|
||||
Actually use the run() function.
|
||||
"""
|
||||
|
||||
# Create a fake "claims.db" for testing
|
||||
# pylint: disable=I1101
|
||||
dbc = apsw.Connection(":memory:")
|
||||
db = dbc.cursor()
|
||||
|
||||
# Create table
|
||||
db.execute("""
|
||||
BEGIN;
|
||||
CREATE TABLE claim (claim_hash TEXT PRIMARY KEY,
|
||||
amount REAL NOT NULL DEFAULT 0.0,
|
||||
support_amount REAL NOT NULL DEFAULT 0.0,
|
||||
trending_mixed REAL NOT NULL DEFAULT 0.0);
|
||||
COMMIT;
|
||||
""")
|
||||
|
||||
# Insert initial states of claims
|
||||
everything = {"huge_whale": 0.01,
|
||||
"huge_whale_botted": 0.01,
|
||||
"medium_whale": 0.01,
|
||||
"small_whale": 0.01,
|
||||
"minnow": 0.01}
|
||||
|
||||
def to_list_of_tuples(stuff):
|
||||
l = []
|
||||
for key in stuff:
|
||||
l.append((key, stuff[key]))
|
||||
return l
|
||||
|
||||
db.executemany("""
|
||||
INSERT INTO claim (claim_hash, amount) VALUES (?, 1E8*?);
|
||||
""", to_list_of_tuples(everything))
|
||||
|
||||
height = 0
|
||||
run(db, height, height, everything.keys())
|
||||
|
||||
# Save trajectories for plotting
|
||||
trajectories = {}
|
||||
for key in trending_data.claims:
|
||||
trajectories[key] = [trending_data.claims[key]["trending_score"]]
|
||||
|
||||
# Main loop
|
||||
for height in range(1, 1000):
|
||||
|
||||
# One-off supports
|
||||
if height == 1:
|
||||
everything["huge_whale"] += 5E5
|
||||
everything["medium_whale"] += 5E4
|
||||
everything["small_whale"] += 5E3
|
||||
|
||||
# Every block
|
||||
if height < 500:
|
||||
everything["huge_whale_botted"] += 5E5/500
|
||||
everything["minnow"] += 1
|
||||
|
||||
# Remove supports
|
||||
if height == 500:
|
||||
for key in everything:
|
||||
everything[key] = 0.01
|
||||
|
||||
# Whack into the db
|
||||
db.executemany("""
|
||||
UPDATE claim SET amount = 1E8*? WHERE claim_hash = ?;
|
||||
""", [(y, x) for (x, y) in to_list_of_tuples(everything)])
|
||||
|
||||
# Call run()
|
||||
run(db, height, height, everything.keys())
|
||||
|
||||
for key in trending_data.claims:
|
||||
trajectories[key].append(trending_data.claims[key]["trending_score"]\
|
||||
/get_time_boost(height))
|
||||
|
||||
dbc.close()
|
||||
|
||||
# pylint: disable=C0415
|
||||
import matplotlib.pyplot as plt
|
||||
for key in trending_data.claims:
|
||||
plt.plot(trajectories[key], label=key)
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
|
||||
# One global instance
|
||||
# pylint: disable=C0103
|
||||
trending_data = TrendingData()
|
||||
|
||||
def run(db, height, final_height, recalculate_claim_hashes):
|
||||
|
||||
if height < final_height - 5*HALF_LIFE:
|
||||
trending_log("Skipping variable_decay trending at block {h}.\n".format(h=height))
|
||||
return
|
||||
|
||||
start = time.time()
|
||||
|
||||
trending_log("Calculating variable_decay trending at block {h}.\n".format(h=height))
|
||||
trending_log(" Length of trending data = {l}.\n"\
|
||||
.format(l=len(trending_data.claims)))
|
||||
|
||||
# Renormalise trending scores and mark all as having changed
|
||||
if height % RENORM_INTERVAL == 0:
|
||||
trending_log(" Renormalising trending scores...")
|
||||
|
||||
keys = trending_data.claims.keys()
|
||||
trending_data.whales = set([])
|
||||
for key in keys:
|
||||
if trending_data.claims[key]["trending_score"] != 0.0:
|
||||
trending_data.claims[key]["trending_score"] *= DECAY_PER_RENORM
|
||||
trending_data.claims[key]["changed"] = True
|
||||
|
||||
# Tiny becomes zero
|
||||
if abs(trending_data.claims[key]["trending_score"]) < 1E-3:
|
||||
trending_data.claims[key]["trending_score"] = 0.0
|
||||
|
||||
# Re-mark whales
|
||||
if trending_data.claims[key]["trending_score"] >= WHALE_THRESHOLD*get_time_boost(height):
|
||||
trending_data.add_whale(key)
|
||||
|
||||
trending_log("done.\n")
|
||||
|
||||
|
||||
# Regular message.
|
||||
trending_log(" Reading total_amounts from db and updating"\
|
||||
+ " trending scores in RAM...")
|
||||
|
||||
# Update claims from db
|
||||
if not trending_data.initialised:
|
||||
|
||||
trending_log("initial load...")
|
||||
# On fresh launch
|
||||
for row in db.execute("""
|
||||
SELECT claim_hash, trending_mixed,
|
||||
(amount + support_amount)
|
||||
AS total_amount
|
||||
FROM claim;
|
||||
"""):
|
||||
trending_data.insert_claim_from_load(height, row[0], row[1], 1E-8*row[2])
|
||||
trending_data.initialised = True
|
||||
else:
|
||||
for row in db.execute(f"""
|
||||
SELECT claim_hash,
|
||||
(amount + support_amount)
|
||||
AS total_amount
|
||||
FROM claim
|
||||
WHERE claim_hash IN
|
||||
({','.join('?' for _ in recalculate_claim_hashes)});
|
||||
""", recalculate_claim_hashes):
|
||||
trending_data.update_claim(height, row[0], 1E-8*row[1])
|
||||
|
||||
# Apply pending spikes
|
||||
trending_data.apply_spikes(height)
|
||||
|
||||
trending_log("done.\n")
|
||||
|
||||
|
||||
# Write trending scores to DB
|
||||
if height % SAVE_INTERVAL == 0:
|
||||
|
||||
trending_log(" Finding and processing whales...")
|
||||
trending_log(str(len(trending_data.whales)) + " whales found...")
|
||||
trending_data.process_whales(height)
|
||||
trending_log("done.\n")
|
||||
|
||||
trending_log(" Writing trending scores to db...")
|
||||
|
||||
the_list = []
|
||||
keys = trending_data.claims.keys()
|
||||
|
||||
for key in keys:
|
||||
if trending_data.claims[key]["changed"]:
|
||||
the_list.append((trending_data.claims[key]["trending_score"], key))
|
||||
trending_data.claims[key]["changed"] = False
|
||||
|
||||
trending_log("{n} scores to write...".format(n=len(the_list)))
|
||||
|
||||
db.executemany("UPDATE claim SET trending_mixed=? WHERE claim_hash=?;",
|
||||
the_list)
|
||||
|
||||
trending_log("done.\n")
|
||||
|
||||
trending_log("Trending operations took {time} seconds.\n\n"\
|
||||
.format(time=time.time() - start))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_trending()
|
Loading…
Reference in a new issue