lbry-sdk/lbrynet/tests/unit/dht/test_node.py
Jack Robison 950ec5bc9a
update mocks and dht tests
-reorganize dht tests
2018-06-07 15:02:47 -04:00

263 lines
13 KiB
Python

#!/usr/bin/env python
#
# This library is free software, distributed under the terms of
# the GNU Lesser General Public License Version 3, or any later version.
# See the COPYING file included in this archive
import hashlib
from twisted.trial import unittest
import struct
from twisted.internet import protocol, defer, selectreactor
from lbrynet.dht.msgtypes import ResponseMessage
from lbrynet.dht.node import Node
from lbrynet.dht import constants
from lbrynet.dht.datastore import DictDataStore
from lbrynet.dht.routingtable import TreeRoutingTable
class NodeIDTest(unittest.TestCase):
""" Test case for the Node class's ID """
def setUp(self):
self.node = Node()
def testAutoCreatedID(self):
""" Tests if a new node has a valid node ID """
self.failUnlessEqual(type(self.node.node_id), str, 'Node does not have a valid ID')
self.failUnlessEqual(len(self.node.node_id), 48, 'Node ID length is incorrect! '
'Expected 384 bits, got %d bits.' %
(len(self.node.node_id) * 8))
def testUniqueness(self):
""" Tests the uniqueness of the values created by the NodeID generator """
generatedIDs = []
for i in range(100):
newID = self.node._generateID()
# ugly uniqueness test
self.failIf(newID in generatedIDs, 'Generated ID #%d not unique!' % (i+1))
generatedIDs.append(newID)
def testKeyLength(self):
""" Tests the key Node ID key length """
for i in range(20):
id = self.node._generateID()
# Key length: 20 bytes == 160 bits
self.failUnlessEqual(len(id), 48,
'Length of generated ID is incorrect! Expected 384 bits, '
'got %d bits.' % (len(id)*8))
class NodeDataTest(unittest.TestCase):
""" Test case for the Node class's data-related functions """
def setUp(self):
h = hashlib.sha384()
h.update('test')
self.node = Node()
self.contact = self.node.contact_manager.make_contact(h.digest(), '127.0.0.1', 12345, self.node._protocol)
self.token = self.node.make_token(self.contact.compact_ip())
self.cases = []
for i in xrange(5):
h.update(str(i))
self.cases.append((h.digest(), 5000+2*i))
self.cases.append((h.digest(), 5001+2*i))
@defer.inlineCallbacks
def testStore(self):
""" Tests if the node can store (and privately retrieve) some data """
for key, port in self.cases:
yield self.node.store(self.contact, key, self.token, port, self.contact.id)
for key, value in self.cases:
expected_result = self.contact.compact_ip() + str(struct.pack('>H', value)) + \
self.contact.id
self.failUnless(self.node._dataStore.hasPeersForBlob(key),
'Stored key not found in node\'s DataStore: "%s"' % key)
self.failUnless(expected_result in self.node._dataStore.getPeersForBlob(key),
'Stored val not found in node\'s DataStore: key:"%s" port:"%s" %s'
% (key, value, self.node._dataStore.getPeersForBlob(key)))
class NodeContactTest(unittest.TestCase):
""" Test case for the Node class's contact management-related functions """
def setUp(self):
self.node = Node()
@defer.inlineCallbacks
def testAddContact(self):
""" Tests if a contact can be added and retrieved correctly """
# Create the contact
h = hashlib.sha384()
h.update('node1')
contactID = h.digest()
contact = self.node.contact_manager.make_contact(contactID, '127.0.0.1', 91824, self.node._protocol)
# Now add it...
yield self.node.addContact(contact)
# ...and request the closest nodes to it using FIND_NODE
closestNodes = self.node._routingTable.findCloseNodes(contactID, constants.k)
self.failUnlessEqual(len(closestNodes), 1, 'Wrong amount of contacts returned; '
'expected 1, got %d' % len(closestNodes))
self.failUnless(contact in closestNodes, 'Added contact not found by issueing '
'_findCloseNodes()')
@defer.inlineCallbacks
def testAddSelfAsContact(self):
""" Tests the node's behaviour when attempting to add itself as a contact """
# Create a contact with the same ID as the local node's ID
contact = self.node.contact_manager.make_contact(self.node.node_id, '127.0.0.1', 91824, None)
# Now try to add it
yield self.node.addContact(contact)
# ...and request the closest nodes to it using FIND_NODE
closestNodes = self.node._routingTable.findCloseNodes(self.node.node_id,
constants.k)
self.failIf(contact in closestNodes, 'Node added itself as a contact')
# class FakeRPCProtocol(protocol.DatagramProtocol):
# def __init__(self):
# self.reactor = selectreactor.SelectReactor()
# self.testResponse = None
# self.network = None
#
# def createNetwork(self, contactNetwork):
# """
# set up a list of contacts together with their closest contacts
# @param contactNetwork: a sequence of tuples, each containing a contact together with its
# closest contacts: C{(<contact>, <closest contact 1, ...,closest contact n>)}
# """
# self.network = contactNetwork
#
# def sendRPC(self, contact, method, args, rawResponse=False):
# """ Fake RPC protocol; allows entangled.kademlia.contact.Contact objects to "send" RPCs"""
#
# h = hashlib.sha384()
# h.update('rpcId')
# rpc_id = h.digest()[:20]
#
# if method == "findNode":
# # get the specific contacts closest contacts
# closestContacts = []
# closestContactsList = []
# for contactTuple in self.network:
# if contact == contactTuple[0]:
# # get the list of closest contacts for this contact
# closestContactsList = contactTuple[1]
# # Pack the closest contacts into a ResponseMessage
# for closeContact in closestContactsList:
# closestContacts.append((closeContact.id, closeContact.address, closeContact.port))
#
# message = ResponseMessage(rpc_id, contact.id, closestContacts)
# df = defer.Deferred()
# df.callback((message, (contact.address, contact.port)))
# return df
# elif method == "findValue":
# for contactTuple in self.network:
# if contact == contactTuple[0]:
# # Get the data stored by this remote contact
# dataDict = contactTuple[2]
# dataKey = dataDict.keys()[0]
# data = dataDict.get(dataKey)
# # Check if this contact has the requested value
# if dataKey == args[0]:
# # Return the data value
# response = dataDict
# print "data found at contact: " + contact.id
# else:
# # Return the closest contact to the requested data key
# print "data not found at contact: " + contact.id
# closeContacts = contactTuple[1]
# closestContacts = []
# for closeContact in closeContacts:
# closestContacts.append((closeContact.id, closeContact.address,
# closeContact.port))
# response = closestContacts
#
# # Create the response message
# message = ResponseMessage(rpc_id, contact.id, response)
# df = defer.Deferred()
# df.callback((message, (contact.address, contact.port)))
# return df
#
# def _send(self, data, rpcID, address):
# """ fake sending data """
#
#
# class NodeLookupTest(unittest.TestCase):
# """ Test case for the Node class's iterativeFind node lookup algorithm """
#
# def setUp(self):
# # create a fake protocol to imitate communication with other nodes
# self._protocol = FakeRPCProtocol()
# # Note: The reactor is never started for this test. All deferred calls run sequentially,
# # since there is no asynchronous network communication
# # create the node to be tested in isolation
# h = hashlib.sha384()
# h.update('node1')
# node_id = str(h.digest())
# self.node = Node(node_id, 4000, None, None, self._protocol)
# self.updPort = 81173
# self.contactsAmount = 80
# # Reinitialise the routing table
# self.node._routingTable = TreeRoutingTable(self.node.node_id)
#
# # create 160 bit node ID's for test purposes
# self.testNodeIDs = []
# idNum = int(self.node.node_id.encode('hex'), 16)
# for i in range(self.contactsAmount):
# # create the testNodeIDs in ascending order, away from the actual node ID,
# # with regards to the distance metric
# self.testNodeIDs.append(str("%X" % (idNum + i + 1)).decode('hex'))
#
# # generate contacts
# self.contacts = []
# for i in range(self.contactsAmount):
# contact = self.node.contact_manager.make_contact(self.testNodeIDs[i], "127.0.0.1",
# self.updPort + i + 1, self._protocol)
# self.contacts.append(contact)
#
# # create the network of contacts in format: (contact, closest contacts)
# contactNetwork = ((self.contacts[0], self.contacts[8:15]),
# (self.contacts[1], self.contacts[16:23]),
# (self.contacts[2], self.contacts[24:31]),
# (self.contacts[3], self.contacts[32:39]),
# (self.contacts[4], self.contacts[40:47]),
# (self.contacts[5], self.contacts[48:55]),
# (self.contacts[6], self.contacts[56:63]),
# (self.contacts[7], self.contacts[64:71]),
# (self.contacts[8], self.contacts[72:79]),
# (self.contacts[40], self.contacts[41:48]),
# (self.contacts[41], self.contacts[41:48]),
# (self.contacts[42], self.contacts[41:48]),
# (self.contacts[43], self.contacts[41:48]),
# (self.contacts[44], self.contacts[41:48]),
# (self.contacts[45], self.contacts[41:48]),
# (self.contacts[46], self.contacts[41:48]),
# (self.contacts[47], self.contacts[41:48]),
# (self.contacts[48], self.contacts[41:48]),
# (self.contacts[50], self.contacts[0:7]),
# (self.contacts[51], self.contacts[8:15]),
# (self.contacts[52], self.contacts[16:23]))
#
# contacts_with_datastores = []
#
# for contact_tuple in contactNetwork:
# contacts_with_datastores.append((contact_tuple[0], contact_tuple[1],
# DictDataStore()))
# self._protocol.createNetwork(contacts_with_datastores)
#
# # @defer.inlineCallbacks
# # def testNodeBootStrap(self):
# # """ Test bootstrap with the closest possible contacts """
# # # Set the expected result
# # expectedResult = {item.id for item in self.contacts[0:8]}
# #
# # activeContacts = yield self.node._iterativeFind(self.node.node_id, self.contacts[0:8])
# #
# # # Check the length of the active contacts
# # self.failUnlessEqual(activeContacts.__len__(), expectedResult.__len__(),
# # "More active contacts should exist, there should be %d "
# # "contacts but there are %d" % (len(expectedResult),
# # len(activeContacts)))
# #
# # # Check that the received active contacts are the same as the input contacts
# # self.failUnlessEqual({contact.id for contact in activeContacts}, expectedResult,
# # "Active should only contain the closest possible contacts"
# # " which were used as input for the boostrap")