lbry-sdk/torba/baseheader.py
2018-06-13 23:00:53 -05:00

244 lines
8.1 KiB
Python

import os
import struct
from binascii import unhexlify
from twisted.internet import threads, defer
import torba
from torba.stream import StreamController, execute_serially
from torba.util import int_to_hex, rev_hex, hash_encode
from torba.hash import double_sha256, pow_hash
class BaseHeaders:
header_size = 80
verify_bits_to_target = True
def __init__(self, ledger): # type: (baseledger.BaseLedger) -> BaseHeaders
self.ledger = ledger
self._size = None
self._on_change_controller = StreamController()
self.on_changed = self._on_change_controller.stream
@property
def path(self):
return os.path.join(self.ledger.path, 'headers')
def touch(self):
if not os.path.exists(self.path):
with open(self.path, 'wb'):
pass
@property
def height(self):
return len(self) - 1
def sync_read_length(self):
return os.path.getsize(self.path) // self.header_size
def sync_read_header(self, height):
if 0 <= height < len(self):
with open(self.path, 'rb') as f:
f.seek(height * self.header_size)
return f.read(self.header_size)
def __len__(self):
if self._size is None:
self._size = self.sync_read_length()
return self._size
def __getitem__(self, height):
assert not isinstance(height, slice), \
"Slicing of header chain has not been implemented yet."
header = self.sync_read_header(height)
return self._deserialize(height, header)
@execute_serially
@defer.inlineCallbacks
def connect(self, start, headers):
yield threads.deferToThread(self._sync_connect, start, headers)
def _sync_connect(self, start, headers):
previous_header = None
for header in self._iterate_headers(start, headers):
height = header['block_height']
if previous_header is None and height > 0:
previous_header = self[height-1]
self._verify_header(height, header, previous_header)
previous_header = header
with open(self.path, 'r+b') as f:
f.seek(start * self.header_size)
f.write(headers)
f.truncate()
_old_size = self._size
self._size = self.sync_read_length()
change = self._size - _old_size
#log.info('saved {} header blocks'.format(change))
self._on_change_controller.add(change)
def _iterate_headers(self, height, headers):
assert len(headers) % self.header_size == 0
for idx in range(len(headers) // self.header_size):
start, end = idx * self.header_size, (idx + 1) * self.header_size
header = headers[start:end]
yield self._deserialize(height+idx, header)
def _verify_header(self, height, header, previous_header):
previous_hash = self._hash_header(previous_header)
assert previous_hash == header['prev_block_hash'], \
"prev hash mismatch: {} vs {}".format(previous_hash, header['prev_block_hash'])
bits, target = self._calculate_next_work_required(height, previous_header, header)
assert bits == header['bits'], \
"bits mismatch: {} vs {} (hash: {})".format(
bits, header['bits'], self._hash_header(header))
# TODO: FIX ME!!!
#_pow_hash = self._pow_hash_header(header)
#assert int(b'0x' + _pow_hash, 16) <= target, \
# "insufficient proof of work: {} vs target {}".format(
# int(b'0x' + _pow_hash, 16), target)
@staticmethod
def _serialize(header):
return b''.join([
int_to_hex(header['version'], 4),
rev_hex(header['prev_block_hash']),
rev_hex(header['merkle_root']),
int_to_hex(int(header['timestamp']), 4),
int_to_hex(int(header['bits']), 4),
int_to_hex(int(header['nonce']), 4)
])
@staticmethod
def _deserialize(height, header):
version, = struct.unpack('<I', header[:4])
timestamp, bits, nonce = struct.unpack('<III', header[68:80])
return {
'block_height': height,
'version': version,
'prev_block_hash': hash_encode(header[4:36]),
'merkle_root': hash_encode(header[36:68]),
'timestamp': timestamp,
'bits': bits,
'nonce': nonce,
}
def _hash_header(self, header):
if header is None:
return b'0' * 64
return hash_encode(double_sha256(unhexlify(self._serialize(header))))
def _pow_hash_header(self, header):
if header is None:
return b'0' * 64
return hash_encode(pow_hash(unhexlify(self._serialize(header))))
def _calculate_next_work_required(self, height, first, last):
if height == 0:
return self.ledger.genesis_bits, self.ledger.max_target
if self.verify_bits_to_target:
bits = last['bits']
bitsN = (bits >> 24) & 0xff
assert 0x03 <= bitsN <= 0x1d, \
"First part of bits should be in [0x03, 0x1d], but it was {}".format(hex(bitsN))
bitsBase = bits & 0xffffff
assert 0x8000 <= bitsBase <= 0x7fffff, \
"Second part of bits should be in [0x8000, 0x7fffff] but it was {}".format(bitsBase)
# new target
retargetTimespan = self.ledger.target_timespan
nActualTimespan = last['timestamp'] - first['timestamp']
nModulatedTimespan = retargetTimespan + (nActualTimespan - retargetTimespan) // 8
nMinTimespan = retargetTimespan - (retargetTimespan // 8)
nMaxTimespan = retargetTimespan + (retargetTimespan // 2)
# Limit adjustment step
if nModulatedTimespan < nMinTimespan:
nModulatedTimespan = nMinTimespan
elif nModulatedTimespan > nMaxTimespan:
nModulatedTimespan = nMaxTimespan
# Retarget
bnPowLimit = _ArithUint256(self.ledger.max_target)
bnNew = _ArithUint256.SetCompact(last['bits'])
bnNew *= nModulatedTimespan
bnNew //= nModulatedTimespan
if bnNew > bnPowLimit:
bnNew = bnPowLimit
return bnNew.GetCompact(), bnNew._value
class _ArithUint256:
""" See: lbrycrd/src/arith_uint256.cpp """
def __init__(self, value):
self._value = value
def __str__(self):
return hex(self._value)
@staticmethod
def fromCompact(nCompact):
"""Convert a compact representation into its value"""
nSize = nCompact >> 24
# the lower 23 bits
nWord = nCompact & 0x007fffff
if nSize <= 3:
return nWord >> 8 * (3 - nSize)
else:
return nWord << 8 * (nSize - 3)
@classmethod
def SetCompact(cls, nCompact):
return cls(cls.fromCompact(nCompact))
def bits(self):
"""Returns the position of the highest bit set plus one."""
bn = bin(self._value)[2:]
for i, d in enumerate(bn):
if d:
return (len(bn) - i) + 1
return 0
def GetLow64(self):
return self._value & 0xffffffffffffffff
def GetCompact(self):
"""Convert a value into its compact representation"""
nSize = (self.bits() + 7) // 8
nCompact = 0
if nSize <= 3:
nCompact = self.GetLow64() << 8 * (3 - nSize)
else:
bn = _ArithUint256(self._value >> 8 * (nSize - 3))
nCompact = bn.GetLow64()
# The 0x00800000 bit denotes the sign.
# Thus, if it is already set, divide the mantissa by 256 and increase the exponent.
if nCompact & 0x00800000:
nCompact >>= 8
nSize += 1
assert (nCompact & ~0x007fffff) == 0
assert nSize < 256
nCompact |= nSize << 24
return nCompact
def __mul__(self, x):
# Take the mod because we are limited to an unsigned 256 bit number
return _ArithUint256((self._value * x) % 2 ** 256)
def __ifloordiv__(self, x):
self._value = (self._value // x)
return self
def __gt__(self, x):
return self._value > x._value