cpuminer/scrypt.c
pooler e0dc6649e1 Version 2.0
- Test the whole hash instead of just looking at the high 32 bits
- Set idle priority on Windows
- Fix parameters -u and -p, and add short options -o and -O
- Fix example JSON configuration file
2012-01-17 00:38:06 +01:00

578 lines
16 KiB
C

/*-
* Copyright 2009 Colin Percival, 2011 ArtForz, 2011 pooler
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This file was originally written by Colin Percival as part of the Tarsnap
* online backup system.
*/
#include "cpuminer-config.h"
#include "miner.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#define byteswap(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu))
static inline void
byteswap_vec(uint32_t *dest, const uint32_t *src, uint32_t len)
{
uint32_t i;
for (i = 0; i < len; i++)
dest[i] = byteswap(src[i]);
}
static inline uint32_t be32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static inline void be32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
static inline uint32_t le32dec(const void *pp)
{
const uint8_t *p = (uint8_t const *)pp;
return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) +
((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24));
}
static inline void le32enc(void *pp, uint32_t x)
{
uint8_t * p = (uint8_t *)pp;
p[0] = x & 0xff;
p[1] = (x >> 8) & 0xff;
p[2] = (x >> 16) & 0xff;
p[3] = (x >> 24) & 0xff;
}
typedef struct SHA256Context {
uint32_t state[8];
uint32_t buf[16];
} SHA256_CTX;
/* Elementary functions used by SHA256 */
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
/* SHA256 round function */
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
/* Adjusted round function for rotating state */
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
/*
* SHA256 block compression function. The 256-bit state is transformed via
* the 512-bit input block to produce a new state.
*/
static void
SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap)
{
uint32_t W[64];
uint32_t S[8];
uint32_t t0, t1;
int i;
/* 1. Prepare message schedule W. */
if(swap)
byteswap_vec(W, block, 16);
else
memcpy(W, block, 64);
for (i = 16; i < 64; i += 2) {
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
}
/* 2. Initialize working variables. */
memcpy(S, state, 32);
/* 3. Mix. */
RNDr(S, W, 0, 0x428a2f98);
RNDr(S, W, 1, 0x71374491);
RNDr(S, W, 2, 0xb5c0fbcf);
RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b);
RNDr(S, W, 5, 0x59f111f1);
RNDr(S, W, 6, 0x923f82a4);
RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98);
RNDr(S, W, 9, 0x12835b01);
RNDr(S, W, 10, 0x243185be);
RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74);
RNDr(S, W, 13, 0x80deb1fe);
RNDr(S, W, 14, 0x9bdc06a7);
RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1);
RNDr(S, W, 17, 0xefbe4786);
RNDr(S, W, 18, 0x0fc19dc6);
RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f);
RNDr(S, W, 21, 0x4a7484aa);
RNDr(S, W, 22, 0x5cb0a9dc);
RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152);
RNDr(S, W, 25, 0xa831c66d);
RNDr(S, W, 26, 0xb00327c8);
RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3);
RNDr(S, W, 29, 0xd5a79147);
RNDr(S, W, 30, 0x06ca6351);
RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85);
RNDr(S, W, 33, 0x2e1b2138);
RNDr(S, W, 34, 0x4d2c6dfc);
RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354);
RNDr(S, W, 37, 0x766a0abb);
RNDr(S, W, 38, 0x81c2c92e);
RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1);
RNDr(S, W, 41, 0xa81a664b);
RNDr(S, W, 42, 0xc24b8b70);
RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819);
RNDr(S, W, 45, 0xd6990624);
RNDr(S, W, 46, 0xf40e3585);
RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116);
RNDr(S, W, 49, 0x1e376c08);
RNDr(S, W, 50, 0x2748774c);
RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3);
RNDr(S, W, 53, 0x4ed8aa4a);
RNDr(S, W, 54, 0x5b9cca4f);
RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee);
RNDr(S, W, 57, 0x78a5636f);
RNDr(S, W, 58, 0x84c87814);
RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa);
RNDr(S, W, 61, 0xa4506ceb);
RNDr(S, W, 62, 0xbef9a3f7);
RNDr(S, W, 63, 0xc67178f2);
/* 4. Mix local working variables into global state */
for (i = 0; i < 8; i++)
state[i] += S[i];
}
static inline void
SHA256_InitState(uint32_t * state)
{
/* Magic initialization constants */
state[0] = 0x6A09E667;
state[1] = 0xBB67AE85;
state[2] = 0x3C6EF372;
state[3] = 0xA54FF53A;
state[4] = 0x510E527F;
state[5] = 0x9B05688C;
state[6] = 0x1F83D9AB;
state[7] = 0x5BE0CD19;
}
static const uint32_t passwdpad[12] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80020000};
static const uint32_t outerpad[8] = {0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300};
static inline void
PBKDF2_SHA256_80_128_init(const uint32_t *passwd, uint32_t tstate[8], uint32_t ostate[8])
{
uint32_t ihash[8];
uint32_t pad[16];
uint32_t i;
SHA256_InitState(tstate);
SHA256_Transform(tstate, passwd, 1);
memcpy(pad, passwd+16, 16);
memcpy(pad+4, passwdpad, 48);
SHA256_Transform(tstate, pad, 1);
memcpy(ihash, tstate, 32);
SHA256_InitState(ostate);
for (i = 0; i < 8; i++)
pad[i] = ihash[i] ^ 0x5c5c5c5c;
for (; i < 16; i++)
pad[i] = 0x5c5c5c5c;
SHA256_Transform(ostate, pad, 0);
SHA256_InitState(tstate);
for (i = 0; i < 8; i++)
pad[i] = ihash[i] ^ 0x36363636;
for (; i < 16; i++)
pad[i] = 0x36363636;
SHA256_Transform(tstate, pad, 0);
}
/**
* PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
* Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
* write the output to buf.
*/
static inline void
PBKDF2_SHA256_80_128(const uint32_t *tstate, const uint32_t *ostate, const uint32_t *passwd, uint32_t *buf)
{
static const uint32_t innerpad[11] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xa0040000};
SHA256_CTX PShictx, PShoctx;
uint32_t i;
/* If Klen > 64, the key is really SHA256(K). */
memcpy(PShictx.state, tstate, 32);
memcpy(PShoctx.state, ostate, 32);
memcpy(PShoctx.buf+8, outerpad, 32);
SHA256_Transform(PShictx.state, passwd, 1);
byteswap_vec(PShictx.buf, passwd+16, 4);
byteswap_vec(PShictx.buf+5, innerpad, 11);
/* Iterate through the blocks. */
for (i = 0; i < 4; i++) {
uint32_t ist[8];
uint32_t ost[8];
memcpy(ist, PShictx.state, 32);
PShictx.buf[4] = i + 1;
SHA256_Transform(ist, PShictx.buf, 0);
memcpy(PShoctx.buf, ist, 32);
memcpy(ost, PShoctx.state, 32);
SHA256_Transform(ost, PShoctx.buf, 0);
byteswap_vec(buf+i*8, ost, 8);
}
}
static inline void
PBKDF2_SHA256_80_128_32(uint32_t *tstate, uint32_t *ostate, const uint32_t *passwd, const uint32_t *salt, uint32_t *output)
{
static const uint32_t ihash_finalblk[16] = {0x00000001,0x80000000,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x00000620};
uint32_t pad[16];
SHA256_Transform(tstate, salt, 1);
SHA256_Transform(tstate, salt+16, 1);
SHA256_Transform(tstate, ihash_finalblk, 0);
memcpy(pad, tstate, 32);
memcpy(pad+8, outerpad, 32);
SHA256_Transform(ostate, pad, 0);
byteswap_vec(output, ostate, 8);
}
/**
* salsa20_8(B):
* Apply the salsa20/8 core to the provided block.
*/
static inline void
salsa20_8(uint32_t B[16], const uint32_t Bx[16])
{
uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
size_t i;
x00 = (B[ 0] ^= Bx[ 0]);
x01 = (B[ 1] ^= Bx[ 1]);
x02 = (B[ 2] ^= Bx[ 2]);
x03 = (B[ 3] ^= Bx[ 3]);
x04 = (B[ 4] ^= Bx[ 4]);
x05 = (B[ 5] ^= Bx[ 5]);
x06 = (B[ 6] ^= Bx[ 6]);
x07 = (B[ 7] ^= Bx[ 7]);
x08 = (B[ 8] ^= Bx[ 8]);
x09 = (B[ 9] ^= Bx[ 9]);
x10 = (B[10] ^= Bx[10]);
x11 = (B[11] ^= Bx[11]);
x12 = (B[12] ^= Bx[12]);
x13 = (B[13] ^= Bx[13]);
x14 = (B[14] ^= Bx[14]);
x15 = (B[15] ^= Bx[15]);
for (i = 0; i < 8; i += 2) {
#define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
/* Operate on columns. */
x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7);
x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9);
x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13);
x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18);
/* Operate on rows. */
x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7);
x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9);
x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13);
x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18);
#undef R
}
B[ 0] += x00;
B[ 1] += x01;
B[ 2] += x02;
B[ 3] += x03;
B[ 4] += x04;
B[ 5] += x05;
B[ 6] += x06;
B[ 7] += x07;
B[ 8] += x08;
B[ 9] += x09;
B[10] += x10;
B[11] += x11;
B[12] += x12;
B[13] += x13;
B[14] += x14;
B[15] += x15;
}
#if defined(__x86_64__)
#define SCRYPT_3WAY
#define SCRYPT_BUFFER_SIZE (3 * 131072 + 63)
int scrypt_best_throughput();
void scrypt_core(uint32_t *X, uint32_t *V);
void scrypt_core_2way(uint32_t *X, uint32_t *Y, uint32_t *V);
void scrypt_core_3way(uint32_t *X, uint32_t *Y, uint32_t *Z, uint32_t *V);
#elif defined(__i386__)
#define SCRYPT_BUFFER_SIZE (131072 + 63)
void scrypt_core(uint32_t *X, uint32_t *V);
#else
#define SCRYPT_BUFFER_SIZE (131072 + 63)
static inline void scrypt_core(uint32_t *X, uint32_t *V)
{
uint32_t i;
uint32_t j;
uint32_t k;
uint64_t *p1, *p2;
p1 = (uint64_t *)X;
for (i = 0; i < 1024; i += 2) {
memcpy(&V[i * 32], X, 128);
salsa20_8(&X[0], &X[16]);
salsa20_8(&X[16], &X[0]);
memcpy(&V[(i + 1) * 32], X, 128);
salsa20_8(&X[0], &X[16]);
salsa20_8(&X[16], &X[0]);
}
for (i = 0; i < 1024; i += 2) {
j = X[16] & 1023;
p2 = (uint64_t *)(&V[j * 32]);
for(k = 0; k < 16; k++)
p1[k] ^= p2[k];
salsa20_8(&X[0], &X[16]);
salsa20_8(&X[16], &X[0]);
j = X[16] & 1023;
p2 = (uint64_t *)(&V[j * 32]);
for(k = 0; k < 16; k++)
p1[k] ^= p2[k];
salsa20_8(&X[0], &X[16]);
salsa20_8(&X[16], &X[0]);
}
}
#endif
unsigned char *scrypt_buffer_alloc() {
return malloc(SCRYPT_BUFFER_SIZE);
}
/* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output
scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes
r = 1, p = 1, N = 1024
*/
static void scrypt_1024_1_1_256_sp(const uint32_t* input, uint32_t *output, unsigned char *scratchpad)
{
uint32_t tstate[8], ostate[8];
uint32_t *V;
uint32_t X[32];
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
PBKDF2_SHA256_80_128_init(input, tstate, ostate);
PBKDF2_SHA256_80_128(tstate, ostate, input, X);
scrypt_core(X, V);
return PBKDF2_SHA256_80_128_32(tstate, ostate, input, X, output);
}
#ifdef SCRYPT_3WAY
static void scrypt_1024_1_1_256_sp_2way(const uint32_t *input1, const uint32_t *input2,
uint32_t *output1, uint32_t *output2, unsigned char *scratchpad)
{
uint32_t tstate1[8], tstate2[8];
uint32_t ostate1[8], ostate2[8];
uint32_t *V;
uint32_t X[32], Y[32];
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
PBKDF2_SHA256_80_128_init(input1, tstate1, ostate1);
PBKDF2_SHA256_80_128_init(input2, tstate2, ostate2);
PBKDF2_SHA256_80_128(tstate1, ostate1, input1, X);
PBKDF2_SHA256_80_128(tstate2, ostate2, input2, Y);
scrypt_core_2way(X, Y, V);
PBKDF2_SHA256_80_128_32(tstate1, ostate1, input1, X, output1);
PBKDF2_SHA256_80_128_32(tstate2, ostate2, input2, Y, output2);
}
static void scrypt_1024_1_1_256_sp_3way(const uint32_t *input1, const uint32_t *input2, const uint32_t *input3,
uint32_t *output1, uint32_t *output2, uint32_t *output3, unsigned char *scratchpad)
{
uint32_t tstate1[8], tstate2[8], tstate3[8];
uint32_t ostate1[8], ostate2[8], ostate3[8];
uint32_t *V;
uint32_t X[32], Y[32], Z[32];
V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
PBKDF2_SHA256_80_128_init(input1, tstate1, ostate1);
PBKDF2_SHA256_80_128_init(input2, tstate2, ostate2);
PBKDF2_SHA256_80_128_init(input3, tstate3, ostate3);
PBKDF2_SHA256_80_128(tstate1, ostate1, input1, X);
PBKDF2_SHA256_80_128(tstate2, ostate2, input2, Y);
PBKDF2_SHA256_80_128(tstate3, ostate3, input3, Z);
scrypt_core_3way(X, Y, Z, V);
PBKDF2_SHA256_80_128_32(tstate1, ostate1, input1, X, output1);
PBKDF2_SHA256_80_128_32(tstate2, ostate2, input2, Y, output2);
PBKDF2_SHA256_80_128_32(tstate3, ostate3, input3, Z, output3);
}
#endif
static int test_hash(const uint32_t *hash, const uint32_t *target)
{
int i;
for (i = 7; i >= 0; i--) {
uint32_t t = le32dec(&target[i]);
if (hash[i] > t)
return 0;
if (hash[i] < t)
return 1;
}
return 1;
}
int scanhash_scrypt(int thr_id, unsigned char *pdata, unsigned char *scratchbuf,
const unsigned char *ptarget,
uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t data[20], hash[8];
#ifdef SCRYPT_3WAY
uint32_t data2[20], hash2[8];
uint32_t data3[20], hash3[8];
int throughput;
#endif
uint32_t n = 0;
uint32_t Htarg = le32dec(&((const uint32_t *)ptarget)[7]);
int i;
work_restart[thr_id].restart = 0;
for (i = 0; i < 19; i++)
data[i] = be32dec(&((const uint32_t *)pdata)[i]);
#ifdef SCRYPT_3WAY
memcpy(data2, data, 80);
memcpy(data3, data, 80);
throughput = scrypt_best_throughput();
#endif
while (1) {
data[19] = n++;
#ifdef SCRYPT_3WAY
if (throughput >= 2 && n < max_nonce) {
data2[19] = n++;
if (throughput >= 3 && n < max_nonce) {
data3[19] = n++;
scrypt_1024_1_1_256_sp_3way(data, data2, data3, hash, hash2, hash3, scratchbuf);
if (hash3[7] < Htarg || hash3[7] == Htarg && test_hash(hash3, (uint32_t *)ptarget)) {
be32enc(&((uint32_t *)pdata)[19], data3[19]);
*hashes_done = n;
return true;
}
} else {
scrypt_1024_1_1_256_sp_2way(data, data2, hash, hash2, scratchbuf);
}
if (hash2[7] < Htarg || hash2[7] == Htarg && test_hash(hash2, (uint32_t *)ptarget)) {
be32enc(&((uint32_t *)pdata)[19], data2[19]);
*hashes_done = n;
return true;
}
} else {
scrypt_1024_1_1_256_sp(data, hash, scratchbuf);
}
#else
scrypt_1024_1_1_256_sp(data, hash, scratchbuf);
#endif
if (hash[7] < Htarg || hash[7] == Htarg && test_hash(hash, (uint32_t *)ptarget)) {
be32enc(&((uint32_t *)pdata)[19], data[19]);
*hashes_done = n;
return true;
}
if ((n >= max_nonce) || work_restart[thr_id].restart) {
*hashes_done = n;
break;
}
}
return false;
}