Introduce an ECDSA signature verification into btcd in order to
mitigate a certain DoS attack and as a performance optimization.
The benefits of SigCache are two fold. Firstly, usage of SigCache
mitigates a DoS attack wherein an attacker causes a victim's client to
hang due to worst-case behavior triggered while processing attacker
crafted invalid transactions. A detailed description of the mitigated
DoS attack can be found here: https://bitslog.wordpress.com/2013/01/23/fixed-bitcoin-vulnerability-explanation-why-the-signature-cache-is-a-dos-protection/
Secondly, usage of the SigCache introduces a signature verification
optimization which speeds up the validation of transactions within a
block, if they've already been seen and verified within the mempool.
The server itself manages the sigCache instance. The blockManager and
txMempool respectively now receive pointers to the created sigCache
instance. All read (sig triplet existence) operations on the sigCache
will not block unless a separate goroutine is adding an entry (writing)
to the sigCache. GetBlockTemplate generation now also utilizes the
sigCache in order to avoid unnecessarily double checking signatures
when generating a template after previously accepting a txn to the
mempool. Consequently, the CPU miner now also employs the same
optimization.
The maximum number of entries for the sigCache has been introduced as a
config parameter in order to allow users to configure the amount of
memory consumed by this new additional caching.
- Move reference tests to test package since they are intended to
exercise the engine as callers would
- Improve the short form script parsing to allow additional opcodes:
DATA_#, OP_#, FALSE, TRUE
- Make use of a function to decode hex strings rather than manually
defining byte slices
- Update the tests to make use of the short form script parsing logic
rather than manually defining byte slices
- Consistently replace all []byte{} and [][]byte{} with nil
- Define tests only used in a specific function inside that func
- Move invalid flag combination test to engine_test since that is what
it is testing
- Remove all redundant script tests in favor of the JSON-based tests in
the data directory.
- Move several functions from internal_test.go to the test files
associated with what the tests are checking
This commit renames the Script type to Engine to better reflect its
purpose. It also renames the NewScript function to NewEngine to match.
This is being done because name Script for the engine is confusing since
it implies it is an actual script rather than the execution environment
for the script. It also paves the way for eventually supplying a
ParsedScript type which will be less likely to be confused with the
execution environment.
While moving the code, some additional variable names and comments have
been updated to better match the style used throughout the rest of the
code base. In addition, an attempt has been made to use consistent naming
of the engine as 'vm' instead of using different variables names as it was
previously.
Finally, the relevant engine code has been moved into a new file named
engine.go and related tests moved to engine_test.go.