lbcd/txscript/engine.go
Dave Collins eb882f39f8 multi: Fix several misspellings in the comments.
This commit corrects several typos in the comments found by misspell.
2016-02-25 11:17:12 -06:00

648 lines
20 KiB
Go

// Copyright (c) 2013-2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript
import (
"fmt"
"math/big"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/wire"
)
// ScriptFlags is a bitmask defining additional operations or tests that will be
// done when executing a script pair.
type ScriptFlags uint32
const (
// ScriptBip16 defines whether the bip16 threshold has passed and thus
// pay-to-script hash transactions will be fully validated.
ScriptBip16 ScriptFlags = 1 << iota
// ScriptStrictMultiSig defines whether to verify the stack item
// used by CHECKMULTISIG is zero length.
ScriptStrictMultiSig
// ScriptDiscourageUpgradableNops defines whether to verify that
// NOP1 through NOP10 are reserved for future soft-fork upgrades. This
// flag must not be used for consensus critical code nor applied to
// blocks as this flag is only for stricter standard transaction
// checks. This flag is only applied when the above opcodes are
// executed.
ScriptDiscourageUpgradableNops
// ScriptVerifyCheckLockTimeVerify defines whether to verify that
// a transaction output is spendable based on the locktime.
// This is BIP0065.
ScriptVerifyCheckLockTimeVerify
// ScriptVerifyCleanStack defines that the stack must contain only
// one stack element after evaluation and that the element must be
// true if interpreted as a boolean. This is rule 6 of BIP0062.
// This flag should never be used without the ScriptBip16 flag.
ScriptVerifyCleanStack
// ScriptVerifyDERSignatures defines that signatures are required
// to compily with the DER format.
ScriptVerifyDERSignatures
// ScriptVerifyLowS defines that signtures are required to comply with
// the DER format and whose S value is <= order / 2. This is rule 5
// of BIP0062.
ScriptVerifyLowS
// ScriptVerifyMinimalData defines that signatures must use the smallest
// push operator. This is both rules 3 and 4 of BIP0062.
ScriptVerifyMinimalData
// ScriptVerifySigPushOnly defines that signature scripts must contain
// only pushed data. This is rule 2 of BIP0062.
ScriptVerifySigPushOnly
// ScriptVerifyStrictEncoding defines that signature scripts and
// public keys must follow the strict encoding requirements.
ScriptVerifyStrictEncoding
)
const (
// maxStackSize is the maximum combined height of stack and alt stack
// during execution.
maxStackSize = 1000
// maxScriptSize is the maximum allowed length of a raw script.
maxScriptSize = 10000
)
// halforder is used to tame ECDSA malleability (see BIP0062).
var halfOrder = new(big.Int).Rsh(btcec.S256().N, 1)
// Engine is the virtual machine that executes scripts.
type Engine struct {
scripts [][]parsedOpcode
scriptIdx int
scriptOff int
lastCodeSep int
dstack stack // data stack
astack stack // alt stack
tx wire.MsgTx
txIdx int
condStack []int
numOps int
flags ScriptFlags
sigCache *SigCache
bip16 bool // treat execution as pay-to-script-hash
savedFirstStack [][]byte // stack from first script for bip16 scripts
}
// hasFlag returns whether the script engine instance has the passed flag set.
func (vm *Engine) hasFlag(flag ScriptFlags) bool {
return vm.flags&flag == flag
}
// isBranchExecuting returns whether or not the current conditional branch is
// actively executing. For example, when the data stack has an OP_FALSE on it
// and an OP_IF is encountered, the branch is inactive until an OP_ELSE or
// OP_ENDIF is encountered. It properly handles nested conditionals.
func (vm *Engine) isBranchExecuting() bool {
if len(vm.condStack) == 0 {
return true
}
return vm.condStack[len(vm.condStack)-1] == OpCondTrue
}
// executeOpcode peforms execution on the passed opcode. It takes into account
// whether or not it is hidden by conditionals, but some rules still must be
// tested in this case.
func (vm *Engine) executeOpcode(pop *parsedOpcode) error {
// Disabled opcodes are fail on program counter.
if pop.isDisabled() {
return ErrStackOpDisabled
}
// Always-illegal opcodes are fail on program counter.
if pop.alwaysIllegal() {
return ErrStackReservedOpcode
}
// Note that this includes OP_RESERVED which counts as a push operation.
if pop.opcode.value > OP_16 {
vm.numOps++
if vm.numOps > MaxOpsPerScript {
return ErrStackTooManyOperations
}
} else if len(pop.data) > MaxScriptElementSize {
return ErrStackElementTooBig
}
// Nothing left to do when this is not a conditional opcode and it is
// not in an executing branch.
if !vm.isBranchExecuting() && !pop.isConditional() {
return nil
}
// Ensure all executed data push opcodes use the minimal encoding when
// the minimal data verification flag is set.
if vm.dstack.verifyMinimalData && vm.isBranchExecuting() &&
pop.opcode.value >= 0 && pop.opcode.value <= OP_PUSHDATA4 {
if err := pop.checkMinimalDataPush(); err != nil {
return err
}
}
return pop.opcode.opfunc(pop, vm)
}
// disasm is a helper function to produce the output for DisasmPC and
// DisasmScript. It produces the opcode prefixed by the program counter at the
// provided position in the script. It does no error checking and leaves that
// to the caller to provide a valid offset.
func (vm *Engine) disasm(scriptIdx int, scriptOff int) string {
return fmt.Sprintf("%02x:%04x: %s", scriptIdx, scriptOff,
vm.scripts[scriptIdx][scriptOff].print(false))
}
// validPC returns an error if the current script position is valid for
// execution, nil otherwise.
func (vm *Engine) validPC() error {
if vm.scriptIdx >= len(vm.scripts) {
return fmt.Errorf("past input scripts %v:%v %v:xxxx",
vm.scriptIdx, vm.scriptOff, len(vm.scripts))
}
if vm.scriptOff >= len(vm.scripts[vm.scriptIdx]) {
return fmt.Errorf("past input scripts %v:%v %v:%04d",
vm.scriptIdx, vm.scriptOff, vm.scriptIdx,
len(vm.scripts[vm.scriptIdx]))
}
return nil
}
// curPC returns either the current script and offset, or an error if the
// position isn't valid.
func (vm *Engine) curPC() (script int, off int, err error) {
err = vm.validPC()
if err != nil {
return 0, 0, err
}
return vm.scriptIdx, vm.scriptOff, nil
}
// DisasmPC returns the string for the disassembly of the opcode that will be
// next to execute when Step() is called.
func (vm *Engine) DisasmPC() (string, error) {
scriptIdx, scriptOff, err := vm.curPC()
if err != nil {
return "", err
}
return vm.disasm(scriptIdx, scriptOff), nil
}
// DisasmScript returns the disassembly string for the script at the requested
// offset index. Index 0 is the signature script and 1 is the public key
// script.
func (vm *Engine) DisasmScript(idx int) (string, error) {
if idx >= len(vm.scripts) {
return "", ErrStackInvalidIndex
}
var disstr string
for i := range vm.scripts[idx] {
disstr = disstr + vm.disasm(idx, i) + "\n"
}
return disstr, nil
}
// CheckErrorCondition returns nil if the running script has ended and was
// successful, leaving a a true boolean on the stack. An error otherwise,
// including if the script has not finished.
func (vm *Engine) CheckErrorCondition(finalScript bool) error {
// Check execution is actually done. When pc is past the end of script
// array there are no more scripts to run.
if vm.scriptIdx < len(vm.scripts) {
return ErrStackScriptUnfinished
}
if finalScript && vm.hasFlag(ScriptVerifyCleanStack) &&
vm.dstack.Depth() != 1 {
return ErrStackCleanStack
} else if vm.dstack.Depth() < 1 {
return ErrStackEmptyStack
}
v, err := vm.dstack.PopBool()
if err != nil {
return err
}
if v == false {
// Log interesting data.
log.Tracef("%v", newLogClosure(func() string {
dis0, _ := vm.DisasmScript(0)
dis1, _ := vm.DisasmScript(1)
return fmt.Sprintf("scripts failed: script0: %s\n"+
"script1: %s", dis0, dis1)
}))
return ErrStackScriptFailed
}
return nil
}
// Step will execute the next instruction and move the program counter to the
// next opcode in the script, or the next script if the current has ended. Step
// will return true in the case that the last opcode was successfully executed.
//
// The result of calling Step or any other method is undefined if an error is
// returned.
func (vm *Engine) Step() (done bool, err error) {
// Verify that it is pointing to a valid script address.
err = vm.validPC()
if err != nil {
return true, err
}
opcode := &vm.scripts[vm.scriptIdx][vm.scriptOff]
// Execute the opcode while taking into account several things such as
// disabled opcodes, illegal opcodes, maximum allowed operations per
// script, maximum script element sizes, and conditionals.
err = vm.executeOpcode(opcode)
if err != nil {
return true, err
}
// The number of elements in the combination of the data and alt stacks
// must not exceed the maximum number of stack elements allowed.
if vm.dstack.Depth()+vm.astack.Depth() > maxStackSize {
return false, ErrStackOverflow
}
// Prepare for next instruction.
vm.scriptOff++
if vm.scriptOff >= len(vm.scripts[vm.scriptIdx]) {
// Illegal to have an `if' that straddles two scripts.
if err == nil && len(vm.condStack) != 0 {
return false, ErrStackMissingEndif
}
// Alt stack doesn't persist.
_ = vm.astack.DropN(vm.astack.Depth())
vm.numOps = 0 // number of ops is per script.
vm.scriptOff = 0
if vm.scriptIdx == 0 && vm.bip16 {
vm.scriptIdx++
vm.savedFirstStack = vm.GetStack()
} else if vm.scriptIdx == 1 && vm.bip16 {
// Put us past the end for CheckErrorCondition()
vm.scriptIdx++
// Check script ran successfully and pull the script
// out of the first stack and execute that.
err := vm.CheckErrorCondition(false)
if err != nil {
return false, err
}
script := vm.savedFirstStack[len(vm.savedFirstStack)-1]
pops, err := parseScript(script)
if err != nil {
return false, err
}
vm.scripts = append(vm.scripts, pops)
// Set stack to be the stack from first script minus the
// script itself
vm.SetStack(vm.savedFirstStack[:len(vm.savedFirstStack)-1])
} else {
vm.scriptIdx++
}
// there are zero length scripts in the wild
if vm.scriptIdx < len(vm.scripts) && vm.scriptOff >= len(vm.scripts[vm.scriptIdx]) {
vm.scriptIdx++
}
vm.lastCodeSep = 0
if vm.scriptIdx >= len(vm.scripts) {
return true, nil
}
}
return false, nil
}
// Execute will execute all scripts in the script engine and return either nil
// for successful validation or an error if one occurred.
func (vm *Engine) Execute() (err error) {
done := false
for done != true {
log.Tracef("%v", newLogClosure(func() string {
dis, err := vm.DisasmPC()
if err != nil {
return fmt.Sprintf("stepping (%v)", err)
}
return fmt.Sprintf("stepping %v", dis)
}))
done, err = vm.Step()
if err != nil {
return err
}
log.Tracef("%v", newLogClosure(func() string {
var dstr, astr string
// if we're tracing, dump the stacks.
if vm.dstack.Depth() != 0 {
dstr = "Stack:\n" + vm.dstack.String()
}
if vm.astack.Depth() != 0 {
astr = "AltStack:\n" + vm.astack.String()
}
return dstr + astr
}))
}
return vm.CheckErrorCondition(true)
}
// subScript returns the script since the last OP_CODESEPARATOR.
func (vm *Engine) subScript() []parsedOpcode {
return vm.scripts[vm.scriptIdx][vm.lastCodeSep:]
}
// checkHashTypeEncoding returns whether or not the passed hashtype adheres to
// the strict encoding requirements if enabled.
func (vm *Engine) checkHashTypeEncoding(hashType SigHashType) error {
if !vm.hasFlag(ScriptVerifyStrictEncoding) {
return nil
}
sigHashType := hashType & ^SigHashAnyOneCanPay
if sigHashType < SigHashAll || sigHashType > SigHashSingle {
return fmt.Errorf("invalid hashtype: 0x%x\n", hashType)
}
return nil
}
// checkPubKeyEncoding returns whether or not the passed public key adheres to
// the strict encoding requirements if enabled.
func (vm *Engine) checkPubKeyEncoding(pubKey []byte) error {
if !vm.hasFlag(ScriptVerifyStrictEncoding) {
return nil
}
if len(pubKey) == 33 && (pubKey[0] == 0x02 || pubKey[0] == 0x03) {
// Compressed
return nil
}
if len(pubKey) == 65 && pubKey[0] == 0x04 {
// Uncompressed
return nil
}
return ErrStackInvalidPubKey
}
// checkSignatureEncoding returns whether or not the passed signature adheres to
// the strict encoding requirements if enabled.
func (vm *Engine) checkSignatureEncoding(sig []byte) error {
if !vm.hasFlag(ScriptVerifyDERSignatures) &&
!vm.hasFlag(ScriptVerifyLowS) &&
!vm.hasFlag(ScriptVerifyStrictEncoding) {
return nil
}
// The format of a DER encoded signature is as follows:
//
// 0x30 <total length> 0x02 <length of R> <R> 0x02 <length of S> <S>
// - 0x30 is the ASN.1 identifier for a sequence
// - Total length is 1 byte and specifies length of all remaining data
// - 0x02 is the ASN.1 identifier that specifies an integer follows
// - Length of R is 1 byte and specifies how many bytes R occupies
// - R is the arbitrary length big-endian encoded number which
// represents the R value of the signature. DER encoding dictates
// that the value must be encoded using the minimum possible number
// of bytes. This implies the first byte can only be null if the
// highest bit of the next byte is set in order to prevent it from
// being interpreted as a negative number.
// - 0x02 is once again the ASN.1 integer identifier
// - Length of S is 1 byte and specifies how many bytes S occupies
// - S is the arbitrary length big-endian encoded number which
// represents the S value of the signature. The encoding rules are
// identical as those for R.
// Minimum length is when both numbers are 1 byte each.
// 0x30 + <1-byte> + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte>
if len(sig) < 8 {
// Too short
return fmt.Errorf("malformed signature: too short: %d < 8",
len(sig))
}
// Maximum length is when both numbers are 33 bytes each. It is 33
// bytes because a 256-bit integer requires 32 bytes and an additional
// leading null byte might required if the high bit is set in the value.
// 0x30 + <1-byte> + 0x02 + 0x21 + <33 bytes> + 0x2 + 0x21 + <33 bytes>
if len(sig) > 72 {
// Too long
return fmt.Errorf("malformed signature: too long: %d > 72",
len(sig))
}
if sig[0] != 0x30 {
// Wrong type
return fmt.Errorf("malformed signature: format has wrong type: 0x%x",
sig[0])
}
if int(sig[1]) != len(sig)-2 {
// Invalid length
return fmt.Errorf("malformed signature: bad length: %d != %d",
sig[1], len(sig)-2)
}
rLen := int(sig[3])
// Make sure S is inside the signature.
if rLen+5 > len(sig) {
return fmt.Errorf("malformed signature: S out of bounds")
}
sLen := int(sig[rLen+5])
// The length of the elements does not match the length of the
// signature.
if rLen+sLen+6 != len(sig) {
return fmt.Errorf("malformed signature: invalid R length")
}
// R elements must be integers.
if sig[2] != 0x02 {
return fmt.Errorf("malformed signature: missing first integer marker")
}
// Zero-length integers are not allowed for R.
if rLen == 0 {
return fmt.Errorf("malformed signature: R length is zero")
}
// R must not be negative.
if sig[4]&0x80 != 0 {
return fmt.Errorf("malformed signature: R value is negative")
}
// Null bytes at the start of R are not allowed, unless R would
// otherwise be interpreted as a negative number.
if rLen > 1 && sig[4] == 0x00 && sig[5]&0x80 == 0 {
return fmt.Errorf("malformed signature: invalid R value")
}
// S elements must be integers.
if sig[rLen+4] != 0x02 {
return fmt.Errorf("malformed signature: missing second integer marker")
}
// Zero-length integers are not allowed for S.
if sLen == 0 {
return fmt.Errorf("malformed signature: S length is zero")
}
// S must not be negative.
if sig[rLen+6]&0x80 != 0 {
return fmt.Errorf("malformed signature: S value is negative")
}
// Null bytes at the start of S are not allowed, unless S would
// otherwise be interpreted as a negative number.
if sLen > 1 && sig[rLen+6] == 0x00 && sig[rLen+7]&0x80 == 0 {
return fmt.Errorf("malformed signature: invalid S value")
}
// Verify the S value is <= half the order of the curve. This check is
// done because when it is higher, the complement modulo the order can
// be used instead which is a shorter encoding by 1 byte. Further,
// without enforcing this, it is possible to replace a signature in a
// valid transaction with the complement while still being a valid
// signature that verifies. This would result in changing the
// transaction hash and thus is source of malleability.
if vm.hasFlag(ScriptVerifyLowS) {
sValue := new(big.Int).SetBytes(sig[rLen+6 : rLen+6+sLen])
if sValue.Cmp(halfOrder) > 0 {
return ErrStackInvalidLowSSignature
}
}
return nil
}
// getStack returns the contents of stack as a byte array bottom up
func getStack(stack *stack) [][]byte {
array := make([][]byte, stack.Depth())
for i := range array {
// PeekByteArry can't fail due to overflow, already checked
array[len(array)-i-1], _ = stack.PeekByteArray(int32(i))
}
return array
}
// setStack sets the stack to the contents of the array where the last item in
// the array is the top item in the stack.
func setStack(stack *stack, data [][]byte) {
// This can not error. Only errors are for invalid arguments.
_ = stack.DropN(stack.Depth())
for i := range data {
stack.PushByteArray(data[i])
}
}
// GetStack returns the contents of the primary stack as an array. where the
// last item in the array is the top of the stack.
func (vm *Engine) GetStack() [][]byte {
return getStack(&vm.dstack)
}
// SetStack sets the contents of the primary stack to the contents of the
// provided array where the last item in the array will be the top of the stack.
func (vm *Engine) SetStack(data [][]byte) {
setStack(&vm.dstack, data)
}
// GetAltStack returns the contents of the primary stack as an array. where the
// last item in the array is the top of the stack.
func (vm *Engine) GetAltStack() [][]byte {
return getStack(&vm.astack)
}
// SetAltStack sets the contents of the primary stack to the contents of the
// provided array where the last item in the array will be the top of the stack.
func (vm *Engine) SetAltStack(data [][]byte) {
setStack(&vm.astack, data)
}
// NewEngine returns a new script engine for the provided public key script,
// transaction, and input index. The flags modify the behavior of the script
// engine according to the description provided by each flag.
func NewEngine(scriptPubKey []byte, tx *wire.MsgTx, txIdx int, flags ScriptFlags, sigCache *SigCache) (*Engine, error) {
// The provided transaction input index must refer to a valid input.
if txIdx < 0 || txIdx >= len(tx.TxIn) {
return nil, ErrInvalidIndex
}
scriptSig := tx.TxIn[txIdx].SignatureScript
// The clean stack flag (ScriptVerifyCleanStack) is not allowed without
// the pay-to-script-hash (P2SH) evaluation (ScriptBip16) flag.
//
// Recall that evaluating a P2SH script without the flag set results in
// non-P2SH evaluation which leaves the P2SH inputs on the stack. Thus,
// allowing the clean stack flag without the P2SH flag would make it
// possible to have a situation where P2SH would not be a soft fork when
// it should be.
vm := Engine{flags: flags, sigCache: sigCache}
if vm.hasFlag(ScriptVerifyCleanStack) && !vm.hasFlag(ScriptBip16) {
return nil, ErrInvalidFlags
}
// The signature script must only contain data pushes when the
// associated flag is set.
if vm.hasFlag(ScriptVerifySigPushOnly) && !IsPushOnlyScript(scriptSig) {
return nil, ErrStackNonPushOnly
}
// The engine stores the scripts in parsed form using a slice. This
// allows multiple scripts to be executed in sequence. For example,
// with a pay-to-script-hash transaction, there will be ultimately be
// a third script to execute.
scripts := [][]byte{scriptSig, scriptPubKey}
vm.scripts = make([][]parsedOpcode, len(scripts))
for i, scr := range scripts {
if len(scr) > maxScriptSize {
return nil, ErrStackLongScript
}
var err error
vm.scripts[i], err = parseScript(scr)
if err != nil {
return nil, err
}
}
// Advance the program counter to the public key script if the signature
// script is empty since there is nothing to execute for it in that
// case.
if len(scripts[0]) == 0 {
vm.scriptIdx++
}
if vm.hasFlag(ScriptBip16) && isScriptHash(vm.scripts[1]) {
// Only accept input scripts that push data for P2SH.
if !isPushOnly(vm.scripts[0]) {
return nil, ErrStackP2SHNonPushOnly
}
vm.bip16 = true
}
if vm.hasFlag(ScriptVerifyMinimalData) {
vm.dstack.verifyMinimalData = true
vm.astack.verifyMinimalData = true
}
vm.tx = *tx
vm.txIdx = txIdx
return &vm, nil
}