843e71515a
This commit adds a new function named SerializeSize to the public API for MsgBlock which can be used to determine how many bytes the serialized data would take without having to actually serialize it. In addition, it makes the exported BlockVersion an untyped constant as well as changes the block and tx versions to a signed integer to more closely match the protocol. Finally, this commit also adds tests for the new function. The following benchmark shows the difference between using the new function to get the serialize size for a typical block and serializing into a temporary buffer and taking the length of it: Bufffer: BenchmarkBlockSerializeSizeBuffer 200000 27050 ns/op New: BenchmarkBlockSerializeSizeNew 100000000 34 ns/op Closes #19.
546 lines
16 KiB
Go
546 lines
16 KiB
Go
// Copyright (c) 2013-2014 Conformal Systems LLC.
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package btcwire
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/binary"
|
|
"fmt"
|
|
"io"
|
|
)
|
|
|
|
const (
|
|
// TxVersion is the current latest supported transaction version.
|
|
TxVersion = 1
|
|
|
|
// MaxTxInSequenceNum is the maximum sequence number the sequence field
|
|
// of a transaction input can be.
|
|
MaxTxInSequenceNum uint32 = 0xffffffff
|
|
|
|
// MaxPrevOutIndex is the maximum index the index field of a previous
|
|
// outpoint can be.
|
|
MaxPrevOutIndex uint32 = 0xffffffff
|
|
)
|
|
|
|
// defaultTxInOutAlloc is the default size used for the backing array for
|
|
// transaction inputs and outputs. The array will dynamically grow as needed,
|
|
// but this figure is intended to provide enough space for the number of
|
|
// inputs and outputs in a typical transaction without needing to grow the
|
|
// backing array multiple times.
|
|
const defaultTxInOutAlloc = 15
|
|
|
|
const (
|
|
// minTxInPayload is the minimum payload size for a transaction input.
|
|
// PreviousOutpoint.Hash + PreviousOutpoint.Index 4 bytes + Varint for
|
|
// SignatureScript length 1 byte + Sequence 4 bytes.
|
|
minTxInPayload = 9 + HashSize
|
|
|
|
// maxTxInPerMessage is the maximum number of transactions inputs that
|
|
// a transaction which fits into a message could possibly have.
|
|
maxTxInPerMessage = (MaxMessagePayload / minTxInPayload) + 1
|
|
|
|
// minTxOutPayload is the minimum payload size for a transaction output.
|
|
// Value 8 bytes + Varint for PkScript length 1 byte.
|
|
minTxOutPayload = 9
|
|
|
|
// maxTxOutPerMessage is the maximum number of transactions outputs that
|
|
// a transaction which fits into a message could possibly have.
|
|
maxTxOutPerMessage = (MaxMessagePayload / minTxOutPayload) + 1
|
|
|
|
// minTxPayload is the minimum payload size for a transaction. Note
|
|
// that any realistically usable transaction must have at least one
|
|
// input or output, but that is a rule enforced at a higher layer, so
|
|
// it is intentionally not included here.
|
|
// Version 4 bytes + Varint number of transaction inputs 1 byte + Varint
|
|
// number of transaction outputs 1 byte + LockTime 4 bytes + min input
|
|
// payload + min output payload.
|
|
minTxPayload = 10
|
|
)
|
|
|
|
// OutPoint defines a bitcoin data type that is used to track previous
|
|
// transaction outputs.
|
|
type OutPoint struct {
|
|
Hash ShaHash
|
|
Index uint32
|
|
}
|
|
|
|
// NewOutPoint returns a new bitcoin transaction outpoint point with the
|
|
// provided hash and index.
|
|
func NewOutPoint(hash *ShaHash, index uint32) *OutPoint {
|
|
return &OutPoint{
|
|
Hash: *hash,
|
|
Index: index,
|
|
}
|
|
}
|
|
|
|
// TxIn defines a bitcoin transaction input.
|
|
type TxIn struct {
|
|
PreviousOutpoint OutPoint
|
|
SignatureScript []byte
|
|
Sequence uint32
|
|
}
|
|
|
|
// SerializeSize returns the number of bytes it would take to serialize the
|
|
// the transaction input.
|
|
func (t *TxIn) SerializeSize() int {
|
|
// Outpoint Hash 32 bytes + Outpoint Index 4 bytes + Sequence 4 bytes +
|
|
// serialized varint size for the length of SignatureScript +
|
|
// SignatureScript bytes.
|
|
return 40 + VarIntSerializeSize(uint64(len(t.SignatureScript))) +
|
|
len(t.SignatureScript)
|
|
}
|
|
|
|
// NewTxIn returns a new bitcoin transaction input with the provided
|
|
// previous outpoint point and signature script with a default sequence of
|
|
// MaxTxInSequenceNum.
|
|
func NewTxIn(prevOut *OutPoint, signatureScript []byte) *TxIn {
|
|
return &TxIn{
|
|
PreviousOutpoint: *prevOut,
|
|
SignatureScript: signatureScript,
|
|
Sequence: MaxTxInSequenceNum,
|
|
}
|
|
}
|
|
|
|
// TxOut defines a bitcoin transaction output.
|
|
type TxOut struct {
|
|
Value int64
|
|
PkScript []byte
|
|
}
|
|
|
|
// SerializeSize returns the number of bytes it would take to serialize the
|
|
// the transaction output.
|
|
func (t *TxOut) SerializeSize() int {
|
|
// Value 8 bytes + serialized varint size for the length of PkScript +
|
|
// PkScript bytes.
|
|
return 8 + VarIntSerializeSize(uint64(len(t.PkScript))) + len(t.PkScript)
|
|
}
|
|
|
|
// NewTxOut returns a new bitcoin transaction output with the provided
|
|
// transaction value and public key script.
|
|
func NewTxOut(value int64, pkScript []byte) *TxOut {
|
|
return &TxOut{
|
|
Value: value,
|
|
PkScript: pkScript,
|
|
}
|
|
}
|
|
|
|
// MsgTx implements the Message interface and represents a bitcoin tx message.
|
|
// It is used to deliver transaction information in response to a getdata
|
|
// message (MsgGetData) for a given transaction.
|
|
//
|
|
// Use the AddTxIn and AddTxOut functions to build up the list of transaction
|
|
// inputs and outputs.
|
|
type MsgTx struct {
|
|
Version int32
|
|
TxIn []*TxIn
|
|
TxOut []*TxOut
|
|
LockTime uint32
|
|
}
|
|
|
|
// AddTxIn adds a transaction input to the message.
|
|
func (msg *MsgTx) AddTxIn(ti *TxIn) {
|
|
msg.TxIn = append(msg.TxIn, ti)
|
|
}
|
|
|
|
// AddTxOut adds a transaction output to the message.
|
|
func (msg *MsgTx) AddTxOut(to *TxOut) {
|
|
msg.TxOut = append(msg.TxOut, to)
|
|
}
|
|
|
|
// TxSha generates the ShaHash name for the transaction.
|
|
func (msg *MsgTx) TxSha() (ShaHash, error) {
|
|
// Encode the transaction and calculate double sha256 on the result.
|
|
// Ignore the error returns since the only way the encode could fail
|
|
// is being out of memory or due to nil pointers, both of which would
|
|
// cause a run-time panic. Also, SetBytes can't fail here due to the
|
|
// fact DoubleSha256 always returns a []byte of the right size
|
|
// regardless of input.
|
|
buf := bytes.NewBuffer(make([]byte, 0, msg.SerializeSize()))
|
|
_ = msg.Serialize(buf)
|
|
var sha ShaHash
|
|
_ = sha.SetBytes(DoubleSha256(buf.Bytes()))
|
|
|
|
// Even though this function can't currently fail, it still returns
|
|
// a potential error to help future proof the API should a failure
|
|
// become possible.
|
|
return sha, nil
|
|
}
|
|
|
|
// Copy creates a deep copy of a transaction so that the original does not get
|
|
// modified when the copy is manipulated.
|
|
func (msg *MsgTx) Copy() *MsgTx {
|
|
// Create new tx and start by copying primitive values and making space
|
|
// for the transaction inputs and outputs.
|
|
newTx := MsgTx{
|
|
Version: msg.Version,
|
|
TxIn: make([]*TxIn, 0, len(msg.TxIn)),
|
|
TxOut: make([]*TxOut, 0, len(msg.TxOut)),
|
|
LockTime: msg.LockTime,
|
|
}
|
|
|
|
// Deep copy the old TxIn data.
|
|
for _, oldTxIn := range msg.TxIn {
|
|
// Deep copy the old previous outpoint.
|
|
oldOutPoint := oldTxIn.PreviousOutpoint
|
|
newOutPoint := OutPoint{}
|
|
newOutPoint.Hash.SetBytes(oldOutPoint.Hash[:])
|
|
newOutPoint.Index = oldOutPoint.Index
|
|
|
|
// Deep copy the old signature script.
|
|
var newScript []byte
|
|
oldScript := oldTxIn.SignatureScript
|
|
oldScriptLen := len(oldScript)
|
|
if oldScriptLen > 0 {
|
|
newScript = make([]byte, oldScriptLen, oldScriptLen)
|
|
copy(newScript, oldScript[:oldScriptLen])
|
|
}
|
|
|
|
// Create new txIn with the deep copied data and append it to
|
|
// new Tx.
|
|
newTxIn := TxIn{
|
|
PreviousOutpoint: newOutPoint,
|
|
SignatureScript: newScript,
|
|
Sequence: oldTxIn.Sequence,
|
|
}
|
|
newTx.TxIn = append(newTx.TxIn, &newTxIn)
|
|
}
|
|
|
|
// Deep copy the old TxOut data.
|
|
for _, oldTxOut := range msg.TxOut {
|
|
// Deep copy the old PkScript
|
|
var newScript []byte
|
|
oldScript := oldTxOut.PkScript
|
|
oldScriptLen := len(oldScript)
|
|
if oldScriptLen > 0 {
|
|
newScript = make([]byte, oldScriptLen, oldScriptLen)
|
|
copy(newScript, oldScript[:oldScriptLen])
|
|
}
|
|
|
|
// Create new txOut with the deep copied data and append it to
|
|
// new Tx.
|
|
newTxOut := TxOut{
|
|
Value: oldTxOut.Value,
|
|
PkScript: newScript,
|
|
}
|
|
newTx.TxOut = append(newTx.TxOut, &newTxOut)
|
|
}
|
|
|
|
return &newTx
|
|
}
|
|
|
|
// BtcDecode decodes r using the bitcoin protocol encoding into the receiver.
|
|
// This is part of the Message interface implementation.
|
|
// See Deserialize for decoding transactions stored to disk, such as in a
|
|
// database, as opposed to decoding transactions from the wire.
|
|
func (msg *MsgTx) BtcDecode(r io.Reader, pver uint32) error {
|
|
var buf [4]byte
|
|
_, err := io.ReadFull(r, buf[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
msg.Version = int32(binary.LittleEndian.Uint32(buf[:]))
|
|
|
|
count, err := readVarInt(r, pver)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Prevent more input transactions than could possibly fit into a
|
|
// message. It would be possible to cause memory exhaustion and panics
|
|
// without a sane upper bound on this count.
|
|
if count > uint64(maxTxInPerMessage) {
|
|
str := fmt.Sprintf("too many input transactions to fit into "+
|
|
"max message size [count %d, max %d]", count,
|
|
maxTxInPerMessage)
|
|
return messageError("MsgTx.BtcDecode", str)
|
|
}
|
|
|
|
msg.TxIn = make([]*TxIn, count)
|
|
for i := uint64(0); i < count; i++ {
|
|
ti := TxIn{}
|
|
err = readTxIn(r, pver, msg.Version, &ti)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
msg.TxIn[i] = &ti
|
|
}
|
|
|
|
count, err = readVarInt(r, pver)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Prevent more output transactions than could possibly fit into a
|
|
// message. It would be possible to cause memory exhaustion and panics
|
|
// without a sane upper bound on this count.
|
|
if count > uint64(maxTxOutPerMessage) {
|
|
str := fmt.Sprintf("too many output transactions to fit into "+
|
|
"max message size [count %d, max %d]", count,
|
|
maxTxOutPerMessage)
|
|
return messageError("MsgTx.BtcDecode", str)
|
|
}
|
|
|
|
msg.TxOut = make([]*TxOut, count)
|
|
for i := uint64(0); i < count; i++ {
|
|
to := TxOut{}
|
|
err = readTxOut(r, pver, msg.Version, &to)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
msg.TxOut[i] = &to
|
|
}
|
|
|
|
_, err = io.ReadFull(r, buf[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
msg.LockTime = binary.LittleEndian.Uint32(buf[:])
|
|
|
|
return nil
|
|
}
|
|
|
|
// Deserialize decodes a transaction from r into the receiver using a format
|
|
// that is suitable for long-term storage such as a database while respecting
|
|
// the Version field in the transaction. This function differs from BtcDecode
|
|
// in that BtcDecode decodes from the bitcoin wire protocol as it was sent
|
|
// across the network. The wire encoding can technically differ depending on
|
|
// the protocol version and doesn't even really need to match the format of a
|
|
// stored transaction at all. As of the time this comment was written, the
|
|
// encoded transaction is the same in both instances, but there is a distinct
|
|
// difference and separating the two allows the API to be flexible enough to
|
|
// deal with changes.
|
|
func (msg *MsgTx) Deserialize(r io.Reader) error {
|
|
// At the current time, there is no difference between the wire encoding
|
|
// at protocol version 0 and the stable long-term storage format. As
|
|
// a result, make use of BtcDecode.
|
|
return msg.BtcDecode(r, 0)
|
|
}
|
|
|
|
// BtcEncode encodes the receiver to w using the bitcoin protocol encoding.
|
|
// This is part of the Message interface implementation.
|
|
// See Serialize for encoding transactions to be stored to disk, such as in a
|
|
// database, as opposed to encoding transactions for the wire.
|
|
func (msg *MsgTx) BtcEncode(w io.Writer, pver uint32) error {
|
|
var buf [4]byte
|
|
binary.LittleEndian.PutUint32(buf[:], uint32(msg.Version))
|
|
_, err := w.Write(buf[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
count := uint64(len(msg.TxIn))
|
|
err = writeVarInt(w, pver, count)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for _, ti := range msg.TxIn {
|
|
err = writeTxIn(w, pver, msg.Version, ti)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
count = uint64(len(msg.TxOut))
|
|
err = writeVarInt(w, pver, count)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for _, to := range msg.TxOut {
|
|
err = writeTxOut(w, pver, msg.Version, to)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
binary.LittleEndian.PutUint32(buf[:], msg.LockTime)
|
|
_, err = w.Write(buf[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Serialize encodes the transaction to w using a format that suitable for
|
|
// long-term storage such as a database while respecting the Version field in
|
|
// the transaction. This function differs from BtcEncode in that BtcEncode
|
|
// encodes the transaction to the bitcoin wire protocol in order to be sent
|
|
// across the network. The wire encoding can technically differ depending on
|
|
// the protocol version and doesn't even really need to match the format of a
|
|
// stored transaction at all. As of the time this comment was written, the
|
|
// encoded transaction is the same in both instances, but there is a distinct
|
|
// difference and separating the two allows the API to be flexible enough to
|
|
// deal with changes.
|
|
func (msg *MsgTx) Serialize(w io.Writer) error {
|
|
// At the current time, there is no difference between the wire encoding
|
|
// at protocol version 0 and the stable long-term storage format. As
|
|
// a result, make use of BtcEncode.
|
|
return msg.BtcEncode(w, 0)
|
|
|
|
}
|
|
|
|
// SerializeSize returns the number of bytes it would take to serialize the
|
|
// the transaction.
|
|
func (msg *MsgTx) SerializeSize() int {
|
|
// Version 4 bytes + LockTime 4 bytes + Serialized varint size for the
|
|
// number of transaction inputs and outputs.
|
|
n := 8 + VarIntSerializeSize(uint64(len(msg.TxIn))) +
|
|
VarIntSerializeSize(uint64(len(msg.TxOut)))
|
|
|
|
for _, txIn := range msg.TxIn {
|
|
n += txIn.SerializeSize()
|
|
}
|
|
|
|
for _, txOut := range msg.TxOut {
|
|
n += txOut.SerializeSize()
|
|
}
|
|
|
|
return n
|
|
}
|
|
|
|
// Command returns the protocol command string for the message. This is part
|
|
// of the Message interface implementation.
|
|
func (msg *MsgTx) Command() string {
|
|
return cmdTx
|
|
}
|
|
|
|
// MaxPayloadLength returns the maximum length the payload can be for the
|
|
// receiver. This is part of the Message interface implementation.
|
|
func (msg *MsgTx) MaxPayloadLength(pver uint32) uint32 {
|
|
return MaxBlockPayload
|
|
}
|
|
|
|
// NewMsgTx returns a new bitcoin tx message that conforms to the Message
|
|
// interface. The return instance has a default version of TxVersion and there
|
|
// are no transaction inputs or outputs. Also, the lock time is set to zero
|
|
// to indicate the transaction is valid immediately as opposed to some time in
|
|
// future.
|
|
func NewMsgTx() *MsgTx {
|
|
return &MsgTx{
|
|
Version: TxVersion,
|
|
TxIn: make([]*TxIn, 0, defaultTxInOutAlloc),
|
|
TxOut: make([]*TxOut, 0, defaultTxInOutAlloc),
|
|
}
|
|
}
|
|
|
|
// readOutPoint reads the next sequence of bytes from r as an OutPoint.
|
|
func readOutPoint(r io.Reader, pver uint32, version int32, op *OutPoint) error {
|
|
_, err := io.ReadFull(r, op.Hash[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var buf [4]byte
|
|
_, err = io.ReadFull(r, buf[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
op.Index = binary.LittleEndian.Uint32(buf[:])
|
|
return nil
|
|
}
|
|
|
|
// writeOutPoint encodes op to the bitcoin protocol encoding for an OutPoint
|
|
// to w.
|
|
func writeOutPoint(w io.Writer, pver uint32, version int32, op *OutPoint) error {
|
|
_, err := w.Write(op.Hash[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var buf [4]byte
|
|
binary.LittleEndian.PutUint32(buf[:], op.Index)
|
|
_, err = w.Write(buf[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// readTxIn reads the next sequence of bytes from r as a transaction input
|
|
// (TxIn).
|
|
func readTxIn(r io.Reader, pver uint32, version int32, ti *TxIn) error {
|
|
var op OutPoint
|
|
err := readOutPoint(r, pver, version, &op)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
ti.PreviousOutpoint = op
|
|
|
|
ti.SignatureScript, err = readVarBytes(r, pver, MaxMessagePayload,
|
|
"transaction input signature script")
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var buf [4]byte
|
|
_, err = io.ReadFull(r, buf[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
ti.Sequence = binary.LittleEndian.Uint32(buf[:])
|
|
|
|
return nil
|
|
}
|
|
|
|
// writeTxIn encodes ti to the bitcoin protocol encoding for a transaction
|
|
// input (TxIn) to w.
|
|
func writeTxIn(w io.Writer, pver uint32, version int32, ti *TxIn) error {
|
|
err := writeOutPoint(w, pver, version, &ti.PreviousOutpoint)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
err = writeVarBytes(w, pver, ti.SignatureScript)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var buf [4]byte
|
|
binary.LittleEndian.PutUint32(buf[:], ti.Sequence)
|
|
_, err = w.Write(buf[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// readTxOut reads the next sequence of bytes from r as a transaction output
|
|
// (TxOut).
|
|
func readTxOut(r io.Reader, pver uint32, version int32, to *TxOut) error {
|
|
var buf [8]byte
|
|
_, err := io.ReadFull(r, buf[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
to.Value = int64(binary.LittleEndian.Uint64(buf[:]))
|
|
|
|
to.PkScript, err = readVarBytes(r, pver, MaxMessagePayload,
|
|
"transaction output public key script")
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// writeTxOut encodes to into the bitcoin protocol encoding for a transaction
|
|
// output (TxOut) to w.
|
|
func writeTxOut(w io.Writer, pver uint32, version int32, to *TxOut) error {
|
|
var buf [8]byte
|
|
binary.LittleEndian.PutUint64(buf[:], uint64(to.Value))
|
|
_, err := w.Write(buf[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
err = writeVarBytes(w, pver, to.PkScript)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
return nil
|
|
}
|