lbcwallet/spvsvc/spvchain/spvchain.go

1410 lines
44 KiB
Go
Raw Normal View History

package spvchain
import (
"errors"
"fmt"
"net"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/addrmgr"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/connmgr"
"github.com/btcsuite/btcd/peer"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcwallet/waddrmgr"
"github.com/btcsuite/btcwallet/wallet"
"github.com/btcsuite/btcwallet/walletdb"
)
// These are exported variables so they can be changed by users.
var (
// ConnectionRetryInterval is the base amount of time to wait in between
// retries when connecting to persistent peers. It is adjusted by the
// number of retries such that there is a retry backoff.
ConnectionRetryInterval = time.Second * 5
// UserAgentName is the user agent name and is used to help identify
// ourselves to other bitcoin peers.
UserAgentName = "spvchain"
// UserAgentVersion is the user agent version and is used to help
// identify ourselves to other bitcoin peers.
UserAgentVersion = "0.0.1-alpha"
// Services describes the services that are supported by the server.
Services = wire.SFNodeCF
// RequiredServices describes the services that are required to be
// supported by outbound peers.
RequiredServices = wire.SFNodeNetwork | wire.SFNodeCF
// BanThreshold is the maximum ban score before a peer is banned.
BanThreshold = uint32(100)
// BanDuration is the duration of a ban.
BanDuration = time.Hour * 24
// TargetOutbound is the number of outbound peers to target.
TargetOutbound = 8
// MaxPeers is the maximum number of connections the client maintains.
MaxPeers = 125
// DisableDNSSeed disables getting initial addresses for Bitcoin nodes
// from DNS.
DisableDNSSeed = false
)
// updatePeerHeightsMsg is a message sent from the blockmanager to the server
// after a new block has been accepted. The purpose of the message is to update
// the heights of peers that were known to announce the block before we
// connected it to the main chain or recognized it as an orphan. With these
// updates, peer heights will be kept up to date, allowing for fresh data when
// selecting sync peer candidacy.
type updatePeerHeightsMsg struct {
newHash *chainhash.Hash
newHeight int32
originPeer *serverPeer
}
// peerState maintains state of inbound, persistent, outbound peers as well
// as banned peers and outbound groups.
type peerState struct {
outboundPeers map[int32]*serverPeer
persistentPeers map[int32]*serverPeer
banned map[string]time.Time
outboundGroups map[string]int
}
// Count returns the count of all known peers.
func (ps *peerState) Count() int {
return len(ps.outboundPeers) + len(ps.persistentPeers)
}
// forAllOutboundPeers is a helper function that runs closure on all outbound
// peers known to peerState.
func (ps *peerState) forAllOutboundPeers(closure func(sp *serverPeer)) {
for _, e := range ps.outboundPeers {
closure(e)
}
for _, e := range ps.persistentPeers {
closure(e)
}
}
// forAllPeers is a helper function that runs closure on all peers known to
// peerState.
func (ps *peerState) forAllPeers(closure func(sp *serverPeer)) {
ps.forAllOutboundPeers(closure)
}
// serverPeer extends the peer to maintain state shared by the server and
// the blockmanager.
type serverPeer struct {
// The following variables must only be used atomically
feeFilter int64
*peer.Peer
connReq *connmgr.ConnReq
server *ChainService
persistent bool
continueHash *chainhash.Hash
relayMtx sync.Mutex
requestQueue []*wire.InvVect
requestedFilters map[chainhash.Hash]bool
requestedBlocks map[chainhash.Hash]struct{}
knownAddresses map[string]struct{}
banScore connmgr.DynamicBanScore
quit chan struct{}
// The following chans are used to sync blockmanager and server.
blockProcessed chan struct{}
}
// newServerPeer returns a new serverPeer instance. The peer needs to be set by
// the caller.
func newServerPeer(s *ChainService, isPersistent bool) *serverPeer {
return &serverPeer{
server: s,
persistent: isPersistent,
requestedFilters: make(map[chainhash.Hash]bool),
requestedBlocks: make(map[chainhash.Hash]struct{}),
knownAddresses: make(map[string]struct{}),
quit: make(chan struct{}),
blockProcessed: make(chan struct{}, 1),
}
}
// newestBlock returns the current best block hash and height using the format
// required by the configuration for the peer package.
func (sp *serverPeer) newestBlock() (*chainhash.Hash, int32, error) {
best, err := sp.server.BestSnapshot()
if err != nil {
return nil, 0, err
}
return &best.Hash, best.Height, nil
}
// addKnownAddresses adds the given addresses to the set of known addresses to
// the peer to prevent sending duplicate addresses.
func (sp *serverPeer) addKnownAddresses(addresses []*wire.NetAddress) {
for _, na := range addresses {
sp.knownAddresses[addrmgr.NetAddressKey(na)] = struct{}{}
}
}
// addressKnown true if the given address is already known to the peer.
func (sp *serverPeer) addressKnown(na *wire.NetAddress) bool {
_, exists := sp.knownAddresses[addrmgr.NetAddressKey(na)]
return exists
}
// addBanScore increases the persistent and decaying ban score fields by the
// values passed as parameters. If the resulting score exceeds half of the ban
// threshold, a warning is logged including the reason provided. Further, if
// the score is above the ban threshold, the peer will be banned and
// disconnected.
func (sp *serverPeer) addBanScore(persistent, transient uint32, reason string) {
// No warning is logged and no score is calculated if banning is disabled.
warnThreshold := BanThreshold >> 1
if transient == 0 && persistent == 0 {
// The score is not being increased, but a warning message is still
// logged if the score is above the warn threshold.
score := sp.banScore.Int()
if score > warnThreshold {
log.Warnf("Misbehaving peer %s: %s -- ban score is %d, "+
"it was not increased this time", sp, reason, score)
}
return
}
score := sp.banScore.Increase(persistent, transient)
if score > warnThreshold {
log.Warnf("Misbehaving peer %s: %s -- ban score increased to %d",
sp, reason, score)
if score > BanThreshold {
log.Warnf("Misbehaving peer %s -- banning and disconnecting",
sp)
sp.server.BanPeer(sp)
sp.Disconnect()
}
}
}
// pushGetCFHeadersMsg sends a getcfheaders message for the provided block
// locator and stop hash to the connected peer.
func (sp *serverPeer) pushGetCFHeadersMsg(locator blockchain.BlockLocator,
stopHash *chainhash.Hash) error {
msg := wire.NewMsgGetCFHeaders()
msg.HashStop = *stopHash
for _, hash := range locator {
err := msg.AddBlockLocatorHash(hash)
if err != nil {
return err
}
}
sp.QueueMessage(msg, nil)
return nil
}
// OnVersion is invoked when a peer receives a version bitcoin message
// and is used to negotiate the protocol version details as well as kick start
// the communications.
func (sp *serverPeer) OnVersion(_ *peer.Peer, msg *wire.MsgVersion) {
// Add the remote peer time as a sample for creating an offset against
// the local clock to keep the network time in sync.
sp.server.timeSource.AddTimeSample(sp.Addr(), msg.Timestamp)
// Signal the block manager this peer is a new sync candidate.
sp.server.blockManager.NewPeer(sp)
// Update the address manager and request known addresses from the
// remote peer for outbound connections. This is skipped when running
// on the simulation test network since it is only intended to connect
// to specified peers and actively avoids advertising and connecting to
// discovered peers.
if sp.server.chainParams.Net != chaincfg.SimNetParams.Net {
addrManager := sp.server.addrManager
// Request known addresses if the server address manager needs
// more and the peer has a protocol version new enough to
// include a timestamp with addresses.
hasTimestamp := sp.ProtocolVersion() >=
wire.NetAddressTimeVersion
if addrManager.NeedMoreAddresses() && hasTimestamp {
sp.QueueMessage(wire.NewMsgGetAddr(), nil)
}
// Mark the address as a known good address.
addrManager.Good(sp.NA())
}
// Add valid peer to the server.
sp.server.AddPeer(sp)
}
// OnBlock is invoked when a peer receives a block bitcoin message. It
// blocks until the bitcoin block has been fully processed.
func (sp *serverPeer) OnBlock(_ *peer.Peer, msg *wire.MsgBlock, buf []byte) {
log.Tracef("got block %s", msg.BlockHash())
// Convert the raw MsgBlock to a btcutil.Block which provides some
// convenience methods and things such as hash caching.
block := btcutil.NewBlockFromBlockAndBytes(msg, buf)
// Add the block to the known inventory for the peer.
iv := wire.NewInvVect(wire.InvTypeBlock, block.Hash())
sp.AddKnownInventory(iv)
// Queue the block up to be handled by the block
// manager and intentionally block further receives
// until the bitcoin block is fully processed and known
// good or bad. This helps prevent a malicious peer
// from queuing up a bunch of bad blocks before
// disconnecting (or being disconnected) and wasting
// memory. Additionally, this behavior is depended on
// by at least the block acceptance test tool as the
// reference implementation processes blocks in the same
// thread and therefore blocks further messages until
// the bitcoin block has been fully processed.
//sp.server.blockManager.QueueBlock(block, sp)
<-sp.blockProcessed
}
// OnInv is invoked when a peer receives an inv bitcoin message and is
// used to examine the inventory being advertised by the remote peer and react
// accordingly. We pass the message down to blockmanager which will call
// QueueMessage with any appropriate responses.
func (sp *serverPeer) OnInv(p *peer.Peer, msg *wire.MsgInv) {
log.Tracef("Got inv with %d items from %s", len(msg.InvList), p.Addr())
newInv := wire.NewMsgInvSizeHint(uint(len(msg.InvList)))
for _, invVect := range msg.InvList {
if invVect.Type == wire.InvTypeTx {
log.Tracef("Ignoring tx %s in inv from %v -- "+
"SPV mode", invVect.Hash, sp)
if sp.ProtocolVersion() >= wire.BIP0037Version {
log.Infof("Peer %v is announcing "+
"transactions -- disconnecting", sp)
sp.Disconnect()
return
}
continue
}
err := newInv.AddInvVect(invVect)
if err != nil {
log.Errorf("Failed to add inventory vector: %s", err)
break
}
}
if len(newInv.InvList) > 0 {
sp.server.blockManager.QueueInv(newInv, sp)
}
}
// OnHeaders is invoked when a peer receives a headers bitcoin
// message. The message is passed down to the block manager.
func (sp *serverPeer) OnHeaders(p *peer.Peer, msg *wire.MsgHeaders) {
log.Tracef("Got headers with %d items from %s", len(msg.Headers),
p.Addr())
sp.server.blockManager.QueueHeaders(msg, sp)
}
// handleGetData is invoked when a peer receives a getdata bitcoin message and
// is used to deliver block and transaction information.
func (sp *serverPeer) OnGetData(_ *peer.Peer, msg *wire.MsgGetData) {
numAdded := 0
notFound := wire.NewMsgNotFound()
length := len(msg.InvList)
// A decaying ban score increase is applied to prevent exhausting resources
// with unusually large inventory queries.
// Requesting more than the maximum inventory vector length within a short
// period of time yields a score above the default ban threshold. Sustained
// bursts of small requests are not penalized as that would potentially ban
// peers performing IBD.
// This incremental score decays each minute to half of its value.
sp.addBanScore(0, uint32(length)*99/wire.MaxInvPerMsg, "getdata")
// We wait on this wait channel periodically to prevent queuing
// far more data than we can send in a reasonable time, wasting memory.
// The waiting occurs after the database fetch for the next one to
// provide a little pipelining.
var waitChan chan struct{}
doneChan := make(chan struct{}, 1)
for i, iv := range msg.InvList {
var c chan struct{}
// If this will be the last message we send.
if i == length-1 && len(notFound.InvList) == 0 {
c = doneChan
} else if (i+1)%3 == 0 {
// Buffered so as to not make the send goroutine block.
c = make(chan struct{}, 1)
}
var err error
switch iv.Type {
case wire.InvTypeTx:
err = sp.server.pushTxMsg(sp, &iv.Hash, c, waitChan)
default:
log.Warnf("Unsupported type in inventory request %d",
iv.Type)
continue
}
if err != nil {
notFound.AddInvVect(iv)
// When there is a failure fetching the final entry
// and the done channel was sent in due to there
// being no outstanding not found inventory, consume
// it here because there is now not found inventory
// that will use the channel momentarily.
if i == len(msg.InvList)-1 && c != nil {
<-c
}
}
numAdded++
waitChan = c
}
if len(notFound.InvList) != 0 {
sp.QueueMessage(notFound, doneChan)
}
// Wait for messages to be sent. We can send quite a lot of data at this
// point and this will keep the peer busy for a decent amount of time.
// We don't process anything else by them in this time so that we
// have an idea of when we should hear back from them - else the idle
// timeout could fire when we were only half done sending the blocks.
if numAdded > 0 {
<-doneChan
}
}
// OnFeeFilter is invoked when a peer receives a feefilter bitcoin message and
// is used by remote peers to request that no transactions which have a fee rate
// lower than provided value are inventoried to them. The peer will be
// disconnected if an invalid fee filter value is provided.
func (sp *serverPeer) OnFeeFilter(_ *peer.Peer, msg *wire.MsgFeeFilter) {
// Check that the passed minimum fee is a valid amount.
if msg.MinFee < 0 || msg.MinFee > btcutil.MaxSatoshi {
log.Debugf("Peer %v sent an invalid feefilter '%v' -- "+
"disconnecting", sp, btcutil.Amount(msg.MinFee))
sp.Disconnect()
return
}
atomic.StoreInt64(&sp.feeFilter, msg.MinFee)
}
// OnReject is invoked when a peer receives a reject bitcoin message and is
// used to notify the server about a rejected transaction.
func (sp *serverPeer) OnReject(_ *peer.Peer, msg *wire.MsgReject) {
}
// OnCFHeaders is invoked when a peer receives a cfheaders bitcoin message and
// is used to notify the server about a list of committed filter headers.
func (sp *serverPeer) OnCFHeaders(_ *peer.Peer, msg *wire.MsgCFHeaders) {
log.Trace("Got cfheaders message!")
}
// OnCFilter is invoked when a peer receives a cfilter bitcoin message and is
// used to notify the server about a committed filter.
func (sp *serverPeer) OnCFilter(_ *peer.Peer, msg *wire.MsgCFilter) {
}
// OnAddr is invoked when a peer receives an addr bitcoin message and is
// used to notify the server about advertised addresses.
func (sp *serverPeer) OnAddr(_ *peer.Peer, msg *wire.MsgAddr) {
// Ignore addresses when running on the simulation test network. This
// helps prevent the network from becoming another public test network
// since it will not be able to learn about other peers that have not
// specifically been provided.
if sp.server.chainParams.Net == chaincfg.SimNetParams.Net {
return
}
// Ignore old style addresses which don't include a timestamp.
if sp.ProtocolVersion() < wire.NetAddressTimeVersion {
return
}
// A message that has no addresses is invalid.
if len(msg.AddrList) == 0 {
log.Errorf("Command [%s] from %s does not contain any addresses",
msg.Command(), sp)
sp.Disconnect()
return
}
for _, na := range msg.AddrList {
// Don't add more address if we're disconnecting.
if !sp.Connected() {
return
}
// Set the timestamp to 5 days ago if it's more than 24 hours
// in the future so this address is one of the first to be
// removed when space is needed.
now := time.Now()
if na.Timestamp.After(now.Add(time.Minute * 10)) {
na.Timestamp = now.Add(-1 * time.Hour * 24 * 5)
}
// Add address to known addresses for this peer.
sp.addKnownAddresses([]*wire.NetAddress{na})
}
// Add addresses to server address manager. The address manager handles
// the details of things such as preventing duplicate addresses, max
// addresses, and last seen updates.
// XXX bitcoind gives a 2 hour time penalty here, do we want to do the
// same?
sp.server.addrManager.AddAddresses(msg.AddrList, sp.NA())
}
// OnRead is invoked when a peer receives a message and it is used to update
// the bytes received by the server.
func (sp *serverPeer) OnRead(_ *peer.Peer, bytesRead int, msg wire.Message, err error) {
sp.server.AddBytesReceived(uint64(bytesRead))
}
// OnWrite is invoked when a peer sends a message and it is used to update
// the bytes sent by the server.
func (sp *serverPeer) OnWrite(_ *peer.Peer, bytesWritten int, msg wire.Message, err error) {
sp.server.AddBytesSent(uint64(bytesWritten))
}
// ChainService is instantiated with functional options
type ChainService struct {
// The following variables must only be used atomically.
// Putting the uint64s first makes them 64-bit aligned for 32-bit systems.
bytesReceived uint64 // Total bytes received from all peers since start.
bytesSent uint64 // Total bytes sent by all peers since start.
started int32
shutdown int32
namespace walletdb.Namespace
chainParams chaincfg.Params
addrManager *addrmgr.AddrManager
connManager *connmgr.ConnManager
blockManager *blockManager
newPeers chan *serverPeer
donePeers chan *serverPeer
banPeers chan *serverPeer
query chan interface{}
peerHeightsUpdate chan updatePeerHeightsMsg
wg sync.WaitGroup
quit chan struct{}
timeSource blockchain.MedianTimeSource
services wire.ServiceFlag
userAgentName string
userAgentVersion string
}
// BanPeer bans a peer that has already been connected to the server by ip.
func (s *ChainService) BanPeer(sp *serverPeer) {
s.banPeers <- sp
}
// BestSnapshot returns the best block hash and height known to the database.
func (s *ChainService) BestSnapshot() (*waddrmgr.BlockStamp, error) {
var best *waddrmgr.BlockStamp
var err error
err = s.namespace.View(func(tx walletdb.Tx) error {
best, err = SyncedTo(tx)
return err
})
if err != nil {
return nil, err
}
return best, nil
}
// LatestBlockLocator returns the block locator for the latest known block
// stored in the database.
func (s *ChainService) LatestBlockLocator() (blockchain.BlockLocator, error) {
var locator blockchain.BlockLocator
var err error
err = s.namespace.View(func(tx walletdb.Tx) error {
best, err := SyncedTo(tx)
if err != nil {
return err
}
locator = BlockLocatorFromHash(tx, best.Hash)
return nil
})
if err != nil {
return nil, err
}
return locator, nil
}
// AddPeer adds a new peer that has already been connected to the server.
func (s *ChainService) AddPeer(sp *serverPeer) {
s.newPeers <- sp
}
// AddBytesSent adds the passed number of bytes to the total bytes sent counter
// for the server. It is safe for concurrent access.
func (s *ChainService) AddBytesSent(bytesSent uint64) {
atomic.AddUint64(&s.bytesSent, bytesSent)
}
// AddBytesReceived adds the passed number of bytes to the total bytes received
// counter for the server. It is safe for concurrent access.
func (s *ChainService) AddBytesReceived(bytesReceived uint64) {
atomic.AddUint64(&s.bytesReceived, bytesReceived)
}
// NetTotals returns the sum of all bytes received and sent across the network
// for all peers. It is safe for concurrent access.
func (s *ChainService) NetTotals() (uint64, uint64) {
return atomic.LoadUint64(&s.bytesReceived),
atomic.LoadUint64(&s.bytesSent)
}
// pushTxMsg sends a tx message for the provided transaction hash to the
// connected peer. An error is returned if the transaction hash is not known.
func (s *ChainService) pushTxMsg(sp *serverPeer, hash *chainhash.Hash, doneChan chan<- struct{}, waitChan <-chan struct{}) error {
// Attempt to fetch the requested transaction from the pool. A
// call could be made to check for existence first, but simply trying
// to fetch a missing transaction results in the same behavior.
/* tx, err := s.txMemPool.FetchTransaction(hash)
if err != nil {
log.Tracef("Unable to fetch tx %v from transaction "+
"pool: %v", hash, err)
if doneChan != nil {
doneChan <- struct{}{}
}
return err
}
// Once we have fetched data wait for any previous operation to finish.
if waitChan != nil {
<-waitChan
}
sp.QueueMessage(tx.MsgTx(), doneChan) */
return nil
}
// peerHandler is used to handle peer operations such as adding and removing
// peers to and from the server, banning peers, and broadcasting messages to
// peers. It must be run in a goroutine.
func (s *ChainService) peerHandler() {
// Start the address manager and block manager, both of which are needed
// by peers. This is done here since their lifecycle is closely tied
// to this handler and rather than adding more channels to sychronize
// things, it's easier and slightly faster to simply start and stop them
// in this handler.
s.addrManager.Start()
s.blockManager.Start()
state := &peerState{
persistentPeers: make(map[int32]*serverPeer),
outboundPeers: make(map[int32]*serverPeer),
banned: make(map[string]time.Time),
outboundGroups: make(map[string]int),
}
if !DisableDNSSeed {
// Add peers discovered through DNS to the address manager.
connmgr.SeedFromDNS(&s.chainParams, RequiredServices,
net.LookupIP, func(addrs []*wire.NetAddress) {
// Bitcoind uses a lookup of the dns seeder here. This
// is rather strange since the values looked up by the
// DNS seed lookups will vary quite a lot.
// to replicate this behaviour we put all addresses as
// having come from the first one.
s.addrManager.AddAddresses(addrs, addrs[0])
})
}
go s.connManager.Start()
out:
for {
select {
// New peers connected to the server.
case p := <-s.newPeers:
s.handleAddPeerMsg(state, p)
// Disconnected peers.
case p := <-s.donePeers:
s.handleDonePeerMsg(state, p)
// Block accepted in mainchain or orphan, update peer height.
case umsg := <-s.peerHeightsUpdate:
s.handleUpdatePeerHeights(state, umsg)
// Peer to ban.
case p := <-s.banPeers:
s.handleBanPeerMsg(state, p)
case qmsg := <-s.query:
s.handleQuery(state, qmsg)
case <-s.quit:
// Disconnect all peers on server shutdown.
state.forAllPeers(func(sp *serverPeer) {
log.Tracef("Shutdown peer %s", sp)
sp.Disconnect()
})
break out
}
}
s.connManager.Stop()
s.blockManager.Stop()
s.addrManager.Stop()
// Drain channels before exiting so nothing is left waiting around
// to send.
cleanup:
for {
select {
case <-s.newPeers:
case <-s.donePeers:
case <-s.peerHeightsUpdate:
case <-s.query:
default:
break cleanup
}
}
s.wg.Done()
log.Tracef("Peer handler done")
}
// Config is a struct detailing the configuration of the chain service.
type Config struct {
DataDir string
Namespace walletdb.Namespace
ChainParams chaincfg.Params
ConnectPeers []string
AddPeers []string
}
// NewChainService returns a new chain service configured to connect to the
// bitcoin network type specified by chainParams. Use start to begin syncing
// with peers.
func NewChainService(cfg Config) (*ChainService, error) {
amgr := addrmgr.New(cfg.DataDir, net.LookupIP)
s := ChainService{
chainParams: cfg.ChainParams,
addrManager: amgr,
newPeers: make(chan *serverPeer, MaxPeers),
donePeers: make(chan *serverPeer, MaxPeers),
banPeers: make(chan *serverPeer, MaxPeers),
query: make(chan interface{}),
quit: make(chan struct{}),
peerHeightsUpdate: make(chan updatePeerHeightsMsg),
namespace: cfg.Namespace,
timeSource: blockchain.NewMedianTime(),
services: Services,
userAgentName: UserAgentName,
userAgentVersion: UserAgentVersion,
}
err := createSPVNS(s.namespace, &s.chainParams)
if err != nil {
return nil, err
}
bm, err := newBlockManager(&s)
if err != nil {
return nil, err
}
s.blockManager = bm
// Only setup a function to return new addresses to connect to when
// not running in connect-only mode. The simulation network is always
// in connect-only mode since it is only intended to connect to
// specified peers and actively avoid advertising and connecting to
// discovered peers in order to prevent it from becoming a public test
// network.
var newAddressFunc func() (net.Addr, error)
if s.chainParams.Net != chaincfg.SimNetParams.Net {
newAddressFunc = func() (net.Addr, error) {
for tries := 0; tries < 100; tries++ {
addr := s.addrManager.GetAddress()
if addr == nil {
break
}
// Address will not be invalid, local or unroutable
// because addrmanager rejects those on addition.
// Just check that we don't already have an address
// in the same group so that we are not connecting
// to the same network segment at the expense of
// others.
key := addrmgr.GroupKey(addr.NetAddress())
if s.OutboundGroupCount(key) != 0 {
continue
}
// only allow recent nodes (10mins) after we failed 30
// times
if tries < 30 && time.Since(addr.LastAttempt()) < 10*time.Minute {
continue
}
// allow nondefault ports after 50 failed tries.
if tries < 50 && fmt.Sprintf("%d", addr.NetAddress().Port) !=
s.chainParams.DefaultPort {
continue
}
addrString := addrmgr.NetAddressKey(addr.NetAddress())
return addrStringToNetAddr(addrString)
}
return nil, errors.New("no valid connect address")
}
}
// Create a connection manager.
if MaxPeers < TargetOutbound {
TargetOutbound = MaxPeers
}
cmgr, err := connmgr.New(&connmgr.Config{
RetryDuration: ConnectionRetryInterval,
TargetOutbound: uint32(TargetOutbound),
Dial: func(addr net.Addr) (net.Conn, error) {
return net.Dial(addr.Network(), addr.String())
},
OnConnection: s.outboundPeerConnected,
GetNewAddress: newAddressFunc,
})
if err != nil {
return nil, err
}
s.connManager = cmgr
// Start up persistent peers.
permanentPeers := cfg.ConnectPeers
if len(permanentPeers) == 0 {
permanentPeers = cfg.AddPeers
}
for _, addr := range permanentPeers {
tcpAddr, err := addrStringToNetAddr(addr)
if err != nil {
return nil, err
}
go s.connManager.Connect(&connmgr.ConnReq{
Addr: tcpAddr,
Permanent: true,
})
}
return &s, nil
}
// addrStringToNetAddr takes an address in the form of 'host:port' and returns
// a net.Addr which maps to the original address with any host names resolved
// to IP addresses.
func addrStringToNetAddr(addr string) (net.Addr, error) {
host, strPort, err := net.SplitHostPort(addr)
if err != nil {
return nil, err
}
// Attempt to look up an IP address associated with the parsed host.
ips, err := net.LookupIP(host)
if err != nil {
return nil, err
}
if len(ips) == 0 {
return nil, fmt.Errorf("no addresses found for %s", host)
}
port, err := strconv.Atoi(strPort)
if err != nil {
return nil, err
}
return &net.TCPAddr{
IP: ips[0],
Port: port,
}, nil
}
// handleUpdatePeerHeight updates the heights of all peers who were known to
// announce a block we recently accepted.
func (s *ChainService) handleUpdatePeerHeights(state *peerState, umsg updatePeerHeightsMsg) {
state.forAllPeers(func(sp *serverPeer) {
// The origin peer should already have the updated height.
if sp == umsg.originPeer {
return
}
// This is a pointer to the underlying memory which doesn't
// change.
latestBlkHash := sp.LastAnnouncedBlock()
// Skip this peer if it hasn't recently announced any new blocks.
if latestBlkHash == nil {
return
}
// If the peer has recently announced a block, and this block
// matches our newly accepted block, then update their block
// height.
if *latestBlkHash == *umsg.newHash {
sp.UpdateLastBlockHeight(umsg.newHeight)
sp.UpdateLastAnnouncedBlock(nil)
}
})
}
// handleAddPeerMsg deals with adding new peers. It is invoked from the
// peerHandler goroutine.
func (s *ChainService) handleAddPeerMsg(state *peerState, sp *serverPeer) bool {
if sp == nil {
return false
}
// Ignore new peers if we're shutting down.
if atomic.LoadInt32(&s.shutdown) != 0 {
log.Infof("New peer %s ignored - server is shutting down", sp)
sp.Disconnect()
return false
}
// Disconnect banned peers.
host, _, err := net.SplitHostPort(sp.Addr())
if err != nil {
log.Debugf("can't split host/port: %s", err)
sp.Disconnect()
return false
}
if banEnd, ok := state.banned[host]; ok {
if time.Now().Before(banEnd) {
log.Debugf("Peer %s is banned for another %v - disconnecting",
host, banEnd.Sub(time.Now()))
sp.Disconnect()
return false
}
log.Infof("Peer %s is no longer banned", host)
delete(state.banned, host)
}
// TODO: Check for max peers from a single IP.
// Limit max number of total peers.
if state.Count() >= MaxPeers {
log.Infof("Max peers reached [%d] - disconnecting peer %s",
MaxPeers, sp)
sp.Disconnect()
// TODO: how to handle permanent peers here?
// they should be rescheduled.
return false
}
// Add the new peer and start it.
log.Debugf("New peer %s", sp)
state.outboundGroups[addrmgr.GroupKey(sp.NA())]++
if sp.persistent {
state.persistentPeers[sp.ID()] = sp
} else {
state.outboundPeers[sp.ID()] = sp
}
return true
}
// handleDonePeerMsg deals with peers that have signalled they are done. It is
// invoked from the peerHandler goroutine.
func (s *ChainService) handleDonePeerMsg(state *peerState, sp *serverPeer) {
var list map[int32]*serverPeer
if sp.persistent {
list = state.persistentPeers
} else {
list = state.outboundPeers
}
if _, ok := list[sp.ID()]; ok {
if !sp.Inbound() && sp.VersionKnown() {
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
}
if !sp.Inbound() && sp.connReq != nil {
s.connManager.Disconnect(sp.connReq.ID())
}
delete(list, sp.ID())
log.Debugf("Removed peer %s", sp)
return
}
if sp.connReq != nil {
s.connManager.Disconnect(sp.connReq.ID())
}
// Update the address' last seen time if the peer has acknowledged
// our version and has sent us its version as well.
if sp.VerAckReceived() && sp.VersionKnown() && sp.NA() != nil {
s.addrManager.Connected(sp.NA())
}
// If we get here it means that either we didn't know about the peer
// or we purposefully deleted it.
}
// handleBanPeerMsg deals with banning peers. It is invoked from the
// peerHandler goroutine.
func (s *ChainService) handleBanPeerMsg(state *peerState, sp *serverPeer) {
host, _, err := net.SplitHostPort(sp.Addr())
if err != nil {
log.Debugf("can't split ban peer %s: %s", sp.Addr(), err)
return
}
log.Infof("Banned peer %s for %v", host, BanDuration)
state.banned[host] = time.Now().Add(BanDuration)
}
// disconnectPeer attempts to drop the connection of a tageted peer in the
// passed peer list. Targets are identified via usage of the passed
// `compareFunc`, which should return `true` if the passed peer is the target
// peer. This function returns true on success and false if the peer is unable
// to be located. If the peer is found, and the passed callback: `whenFound'
// isn't nil, we call it with the peer as the argument before it is removed
// from the peerList, and is disconnected from the server.
func disconnectPeer(peerList map[int32]*serverPeer, compareFunc func(*serverPeer) bool, whenFound func(*serverPeer)) bool {
for addr, peer := range peerList {
if compareFunc(peer) {
if whenFound != nil {
whenFound(peer)
}
// This is ok because we are not continuing
// to iterate so won't corrupt the loop.
delete(peerList, addr)
peer.Disconnect()
return true
}
}
return false
}
// sendUnminedTxs iterates through all transactions that spend from wallet
// credits that are not known to have been mined into a block, and attempts to
// send each to the chain server for relay.
//
// TODO: This should return an error if any of these lookups or sends fail, but
// since send errors due to double spends need to be handled gracefully and this
// isn't done yet, all sending errors are simply logged.
func (s *ChainService) sendUnminedTxs(w *wallet.Wallet) error {
/*txs, err := w.TxStore.UnminedTxs()
if err != nil {
return err
}
rpcClient := s.rpcClient
for _, tx := range txs {
resp, err := rpcClient.SendRawTransaction(tx, false)
if err != nil {
// TODO(jrick): Check error for if this tx is a double spend,
// remove it if so.
log.Debugf("Could not resend transaction %v: %v",
tx.TxHash(), err)
continue
}
log.Debugf("Resent unmined transaction %v", resp)
}*/
return nil
}
// PublishTransaction sends the transaction to the consensus RPC server so it
// can be propigated to other nodes and eventually mined.
func (s *ChainService) PublishTransaction(tx *wire.MsgTx) error {
/*_, err := s.rpcClient.SendRawTransaction(tx, false)
return err*/
return nil
}
// AnnounceNewTransactions generates and relays inventory vectors and notifies
// both websocket and getblocktemplate long poll clients of the passed
// transactions. This function should be called whenever new transactions
// are added to the mempool.
func (s *ChainService) AnnounceNewTransactions( /*newTxs []*mempool.TxDesc*/ ) {
// Generate and relay inventory vectors for all newly accepted
// transactions into the memory pool due to the original being
// accepted.
/*for _, txD := range newTxs {
// Generate the inventory vector and relay it.
iv := wire.NewInvVect(wire.InvTypeTx, txD.Tx.Hash())
s.RelayInventory(iv, txD)
if s.rpcServer != nil {
// Notify websocket clients about mempool transactions.
s.rpcServer.ntfnMgr.NotifyMempoolTx(txD.Tx, true)
// Potentially notify any getblocktemplate long poll clients
// about stale block templates due to the new transaction.
s.rpcServer.gbtWorkState.NotifyMempoolTx(
s.txMemPool.LastUpdated())
}
}*/
}
// newPeerConfig returns the configuration for the given serverPeer.
func newPeerConfig(sp *serverPeer) *peer.Config {
return &peer.Config{
Listeners: peer.MessageListeners{
OnVersion: sp.OnVersion,
OnBlock: sp.OnBlock,
OnInv: sp.OnInv,
OnHeaders: sp.OnHeaders,
OnCFHeaders: sp.OnCFHeaders,
OnCFilter: sp.OnCFilter,
OnGetData: sp.OnGetData,
OnReject: sp.OnReject,
OnFeeFilter: sp.OnFeeFilter,
OnAddr: sp.OnAddr,
OnRead: sp.OnRead,
OnWrite: sp.OnWrite,
// Note: The reference client currently bans peers that send alerts
// not signed with its key. We could verify against their key, but
// since the reference client is currently unwilling to support
// other implementations' alert messages, we will not relay theirs.
OnAlert: nil,
},
NewestBlock: sp.newestBlock,
HostToNetAddress: sp.server.addrManager.HostToNetAddress,
UserAgentName: sp.server.userAgentName,
UserAgentVersion: sp.server.userAgentVersion,
ChainParams: &sp.server.chainParams,
Services: sp.server.services,
ProtocolVersion: wire.FeeFilterVersion,
DisableRelayTx: true,
}
}
// outboundPeerConnected is invoked by the connection manager when a new
// outbound connection is established. It initializes a new outbound server
// peer instance, associates it with the relevant state such as the connection
// request instance and the connection itself, and finally notifies the address
// manager of the attempt.
func (s *ChainService) outboundPeerConnected(c *connmgr.ConnReq, conn net.Conn) {
sp := newServerPeer(s, c.Permanent)
p, err := peer.NewOutboundPeer(newPeerConfig(sp), c.Addr.String())
if err != nil {
log.Debugf("Cannot create outbound peer %s: %s", c.Addr, err)
s.connManager.Disconnect(c.ID())
}
sp.Peer = p
sp.connReq = c
sp.AssociateConnection(conn)
go s.peerDoneHandler(sp)
s.addrManager.Attempt(sp.NA())
}
// peerDoneHandler handles peer disconnects by notifiying the server that it's
// done along with other performing other desirable cleanup.
func (s *ChainService) peerDoneHandler(sp *serverPeer) {
sp.WaitForDisconnect()
s.donePeers <- sp
// Only tell block manager we are gone if we ever told it we existed.
if sp.VersionKnown() {
s.blockManager.DonePeer(sp)
}
close(sp.quit)
}
// ConnectedCount returns the number of currently connected peers.
func (s *ChainService) ConnectedCount() int32 {
replyChan := make(chan int32)
s.query <- getConnCountMsg{reply: replyChan}
return <-replyChan
}
// OutboundGroupCount returns the number of peers connected to the given
// outbound group key.
func (s *ChainService) OutboundGroupCount(key string) int {
replyChan := make(chan int)
s.query <- getOutboundGroup{key: key, reply: replyChan}
return <-replyChan
}
// AddedNodeInfo returns an array of btcjson.GetAddedNodeInfoResult structures
// describing the persistent (added) nodes.
func (s *ChainService) AddedNodeInfo() []*serverPeer {
replyChan := make(chan []*serverPeer)
s.query <- getAddedNodesMsg{reply: replyChan}
return <-replyChan
}
// Peers returns an array of all connected peers.
func (s *ChainService) Peers() []*serverPeer {
replyChan := make(chan []*serverPeer)
s.query <- getPeersMsg{reply: replyChan}
return <-replyChan
}
// DisconnectNodeByAddr disconnects a peer by target address. Both outbound and
// inbound nodes will be searched for the target node. An error message will
// be returned if the peer was not found.
func (s *ChainService) DisconnectNodeByAddr(addr string) error {
replyChan := make(chan error)
s.query <- disconnectNodeMsg{
cmp: func(sp *serverPeer) bool { return sp.Addr() == addr },
reply: replyChan,
}
return <-replyChan
}
// DisconnectNodeByID disconnects a peer by target node id. Both outbound and
// inbound nodes will be searched for the target node. An error message will be
// returned if the peer was not found.
func (s *ChainService) DisconnectNodeByID(id int32) error {
replyChan := make(chan error)
s.query <- disconnectNodeMsg{
cmp: func(sp *serverPeer) bool { return sp.ID() == id },
reply: replyChan,
}
return <-replyChan
}
// RemoveNodeByAddr removes a peer from the list of persistent peers if
// present. An error will be returned if the peer was not found.
func (s *ChainService) RemoveNodeByAddr(addr string) error {
replyChan := make(chan error)
s.query <- removeNodeMsg{
cmp: func(sp *serverPeer) bool { return sp.Addr() == addr },
reply: replyChan,
}
return <-replyChan
}
// RemoveNodeByID removes a peer by node ID from the list of persistent peers
// if present. An error will be returned if the peer was not found.
func (s *ChainService) RemoveNodeByID(id int32) error {
replyChan := make(chan error)
s.query <- removeNodeMsg{
cmp: func(sp *serverPeer) bool { return sp.ID() == id },
reply: replyChan,
}
return <-replyChan
}
// ConnectNode adds `addr' as a new outbound peer. If permanent is true then the
// peer will be persistent and reconnect if the connection is lost.
// It is an error to call this with an already existing peer.
func (s *ChainService) ConnectNode(addr string, permanent bool) error {
replyChan := make(chan error)
s.query <- connectNodeMsg{addr: addr, permanent: permanent, reply: replyChan}
return <-replyChan
}
// UpdatePeerHeights updates the heights of all peers who have have announced
// the latest connected main chain block, or a recognized orphan. These height
// updates allow us to dynamically refresh peer heights, ensuring sync peer
// selection has access to the latest block heights for each peer.
func (s *ChainService) UpdatePeerHeights(latestBlkHash *chainhash.Hash, latestHeight int32, updateSource *serverPeer) {
s.peerHeightsUpdate <- updatePeerHeightsMsg{
newHash: latestBlkHash,
newHeight: latestHeight,
originPeer: updateSource,
}
}
// rebroadcastHandler keeps track of user submitted inventories that we have
// sent out but have not yet made it into a block. We periodically rebroadcast
// them in case our peers restarted or otherwise lost track of them.
func (s *ChainService) rebroadcastHandler() {
// Wait 5 min before first tx rebroadcast.
timer := time.NewTimer(5 * time.Minute)
//pendingInvs := make(map[wire.InvVect]interface{})
out:
for {
select {
/*case riv := <-s.modifyRebroadcastInv:
switch msg := riv.(type) {
// Incoming InvVects are added to our map of RPC txs.
case broadcastInventoryAdd:
pendingInvs[*msg.invVect] = msg.data
// When an InvVect has been added to a block, we can
// now remove it, if it was present.
case broadcastInventoryDel:
if _, ok := pendingInvs[*msg]; ok {
delete(pendingInvs, *msg)
}
}*/
case <-timer.C: /*
// Any inventory we have has not made it into a block
// yet. We periodically resubmit them until they have.
for iv, data := range pendingInvs {
ivCopy := iv
s.RelayInventory(&ivCopy, data)
}
// Process at a random time up to 30mins (in seconds)
// in the future.
timer.Reset(time.Second *
time.Duration(randomUint16Number(1800))) */
case <-s.quit:
break out
}
}
timer.Stop()
// Drain channels before exiting so nothing is left waiting around
// to send.
cleanup:
for {
select {
//case <-s.modifyRebroadcastInv:
default:
break cleanup
}
}
s.wg.Done()
}
// Start begins connecting to peers and syncing the blockchain.
func (s *ChainService) Start() {
// Already started?
if atomic.AddInt32(&s.started, 1) != 1 {
return
}
// Start the peer handler which in turn starts the address and block
// managers.
s.wg.Add(2)
go s.peerHandler()
go s.rebroadcastHandler()
}
// Stop gracefully shuts down the server by stopping and disconnecting all
// peers and the main listener.
func (s *ChainService) Stop() error {
// Make sure this only happens once.
if atomic.AddInt32(&s.shutdown, 1) != 1 {
return nil
}
// Signal the remaining goroutines to quit.
close(s.quit)
s.wg.Wait()
return nil
}
// GetBlockByHeight gets block information from the ChainService database by
// its height.
func (s *ChainService) GetBlockByHeight(height uint32) (wire.BlockHeader,
uint32, error) {
var bh wire.BlockHeader
var h uint32
var err error
err = s.namespace.View(func(dbTx walletdb.Tx) error {
bh, h, err = GetBlockByHeight(dbTx, height)
return err
})
return bh, h, err
}
// GetBlockByHash gets block information from the ChainService database by its
// hash.
func (s *ChainService) GetBlockByHash(hash chainhash.Hash) (wire.BlockHeader,
uint32, error) {
var bh wire.BlockHeader
var h uint32
var err error
err = s.namespace.View(func(dbTx walletdb.Tx) error {
bh, h, err = GetBlockByHash(dbTx, hash)
return err
})
return bh, h, err
}
// LatestBlock gets the latest block's information from the ChainService
// database.
func (s *ChainService) LatestBlock() (wire.BlockHeader, uint32, error) {
var bh wire.BlockHeader
var h uint32
var err error
err = s.namespace.View(func(dbTx walletdb.Tx) error {
bh, h, err = LatestBlock(dbTx)
return err
})
return bh, h, err
}
// putBlock puts a verified block header and height in the ChainService
// database.
func (s *ChainService) putBlock(header wire.BlockHeader, height uint32) error {
return s.namespace.Update(func(dbTx walletdb.Tx) error {
return putBlock(dbTx, header, height)
})
}
// putMaxBlockHeight puts the max block height to the ChainService database.
func (s *ChainService) putMaxBlockHeight(maxBlockHeight uint32) error {
return s.namespace.Update(func(dbTx walletdb.Tx) error {
return putMaxBlockHeight(dbTx, maxBlockHeight)
})
}
func (s *ChainService) rollbackLastBlock() (*waddrmgr.BlockStamp, error) {
var bs *waddrmgr.BlockStamp
var err error
err = s.namespace.Update(func(dbTx walletdb.Tx) error {
bs, err = rollbackLastBlock(dbTx)
return err
})
return bs, err
}
func (s *ChainService) rollbackToHeight(height uint32) (*waddrmgr.BlockStamp, error) {
var bs *waddrmgr.BlockStamp
var err error
err = s.namespace.Update(func(dbTx walletdb.Tx) error {
bs, err = SyncedTo(dbTx)
if err != nil {
return err
}
for uint32(bs.Height) > height {
bs, err = rollbackLastBlock(dbTx)
if err != nil {
return err
}
}
return nil
})
return bs, err
}
// IsCurrent lets the caller know whether the chain service's block manager
// thinks its view of the network is current.
func (s *ChainService) IsCurrent() bool {
return s.blockManager.IsCurrent()
}