lbcwallet/wallet/wallet.go
Josh Rickmar 82f2067ac4 Remove unnecessary mutex around wallet secret.
The wallet package was using a sync.Mutex around the saved decryption
key (kept in memory for an unlocked wallet).  As the wallet package is
designed to use no internal locking, and correct synchronization is
provided by the importers of the package, this mutex has been removed.
2014-01-17 09:35:52 -05:00

2399 lines
61 KiB
Go

/*
* Copyright (c) 2013, 2014 Conformal Systems LLC <info@conformal.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
package wallet
import (
"bytes"
"code.google.com/p/go.crypto/ripemd160"
"crypto/aes"
"crypto/cipher"
"crypto/ecdsa"
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"github.com/conformal/btcec"
"github.com/conformal/btcutil"
"github.com/conformal/btcwire"
"io"
"math/big"
"time"
)
const (
// Length in bytes of KDF output.
kdfOutputBytes = 32
// Maximum length in bytes of a comment that can have a size represented
// as a uint16.
maxCommentLen = (1 << 16) - 1
)
const (
defaultKdfComputeTime = 0.25
defaultKdfMaxMem = 32 * 1024 * 1024
)
// Possible errors when dealing with wallets.
var (
ErrAddressNotFound = errors.New("address not found")
ErrChecksumMismatch = errors.New("checksum mismatch")
ErrDuplicate = errors.New("duplicate key or address")
ErrMalformedEntry = errors.New("malformed entry")
ErrNetworkMismatch = errors.New("network mismatch")
ErrWalletDoesNotExist = errors.New("non-existant wallet")
ErrWalletLocked = errors.New("wallet is locked")
)
var (
// '\xbaWALLET\x00'
fileID = [8]byte{0xba, 0x57, 0x41, 0x4c, 0x4c, 0x45, 0x54, 0x00}
mainnetMagicBytes = [4]byte{0xf9, 0xbe, 0xb4, 0xd9}
testnetMagicBytes = [4]byte{0x0b, 0x11, 0x09, 0x07}
)
type entryHeader byte
const (
addrCommentHeader entryHeader = 1 << iota
txCommentHeader
deletedHeader
addrHeader entryHeader = 0
)
// We want to use binaryRead and binaryWrite instead of binary.Read
// and binary.Write because those from the binary package do not return
// the number of bytes actually written or read. We need to return
// this value to correctly support the io.ReaderFrom and io.WriterTo
// interfaces.
func binaryRead(r io.Reader, order binary.ByteOrder, data interface{}) (n int64, err error) {
var read int
buf := make([]byte, binary.Size(data))
if read, err = r.Read(buf); err != nil {
return int64(read), err
}
if read < binary.Size(data) {
return int64(read), io.EOF
}
return int64(read), binary.Read(bytes.NewBuffer(buf), order, data)
}
// See comment for binaryRead().
func binaryWrite(w io.Writer, order binary.ByteOrder, data interface{}) (n int64, err error) {
var buf bytes.Buffer
if err = binary.Write(&buf, order, data); err != nil {
return 0, err
}
written, err := w.Write(buf.Bytes())
return int64(written), err
}
// pubkeyFromPrivkey creates an encoded pubkey based on a
// 32-byte privkey. The returned pubkey is 33 bytes if compressed,
// or 65 bytes if uncompressed.
func pubkeyFromPrivkey(privkey []byte, compress bool) (pubkey []byte) {
x, y := btcec.S256().ScalarBaseMult(privkey)
pub := (*btcec.PublicKey)(&ecdsa.PublicKey{
Curve: btcec.S256(),
X: x,
Y: y,
})
if compress {
return pub.SerializeCompressed()
}
return pub.SerializeUncompressed()
}
func keyOneIter(passphrase, salt []byte, memReqts uint64) []byte {
saltedpass := append(passphrase, salt...)
lutbl := make([]byte, memReqts)
// Seed for lookup table
seed := sha512.Sum512(saltedpass)
copy(lutbl[:sha512.Size], seed[:])
for nByte := 0; nByte < (int(memReqts) - sha512.Size); nByte += sha512.Size {
hash := sha512.Sum512(lutbl[nByte : nByte+sha512.Size])
copy(lutbl[nByte+sha512.Size:nByte+2*sha512.Size], hash[:])
}
x := lutbl[cap(lutbl)-sha512.Size:]
seqCt := uint32(memReqts / sha512.Size)
nLookups := seqCt / 2
for i := uint32(0); i < nLookups; i++ {
// Armory ignores endianness here. We assume LE.
newIdx := binary.LittleEndian.Uint32(x[cap(x)-4:]) % seqCt
// Index of hash result at newIdx
vIdx := newIdx * sha512.Size
v := lutbl[vIdx : vIdx+sha512.Size]
// XOR hash x with hash v
for j := 0; j < sha512.Size; j++ {
x[j] ^= v[j]
}
// Save new hash to x
hash := sha512.Sum512(x)
copy(x, hash[:])
}
return x[:kdfOutputBytes]
}
// Key implements the key derivation function used by Armory
// based on the ROMix algorithm described in Colin Percival's paper
// "Stronger Key Derivation via Sequential Memory-Hard Functions"
// (http://www.tarsnap.com/scrypt/scrypt.pdf).
func Key(passphrase []byte, params *kdfParameters) []byte {
masterKey := passphrase
for i := uint32(0); i < params.nIter; i++ {
masterKey = keyOneIter(masterKey, params.salt[:], params.mem)
}
return masterKey
}
func pad(size int, b []byte) []byte {
// Prevent a possible panic if the input exceeds the expected size.
if len(b) > size {
size = len(b)
}
p := make([]byte, size)
copy(p[size-len(b):], b)
return p
}
// ChainedPrivKey deterministically generates a new private key using a
// previous address and chaincode. privkey and chaincode must be 32
// bytes long, and pubkey may either be 33 or 65 bytes.
func ChainedPrivKey(privkey, pubkey, chaincode []byte) ([]byte, error) {
if len(privkey) != 32 {
return nil, fmt.Errorf("invalid privkey length %d (must be 32)",
len(privkey))
}
if len(chaincode) != 32 {
return nil, fmt.Errorf("invalid chaincode length %d (must be 32)",
len(chaincode))
}
if !(len(pubkey) == 65 || len(pubkey) == 33) {
return nil, fmt.Errorf("invalid pubkey length %d", len(pubkey))
}
xorbytes := make([]byte, 32)
chainMod := btcwire.DoubleSha256(pubkey)
for i := range xorbytes {
xorbytes[i] = chainMod[i] ^ chaincode[i]
}
chainXor := new(big.Int).SetBytes(xorbytes)
privint := new(big.Int).SetBytes(privkey)
t := new(big.Int).Mul(chainXor, privint)
b := t.Mod(t, btcec.S256().N).Bytes()
return pad(32, b), nil
}
// ChainedPubKey deterministically generates a new public key using a
// previous public key and chaincode. pubkey must be 33 or 65 bytes, and
// chaincode must be 32 bytes long.
func ChainedPubKey(pubkey, chaincode []byte) ([]byte, error) {
if !(len(pubkey) == 65 || len(pubkey) == 33) {
return nil, fmt.Errorf("invalid pubkey length %v", len(pubkey))
}
if len(chaincode) != 32 {
return nil, fmt.Errorf("invalid chaincode length %d (must be 32)",
len(chaincode))
}
xorbytes := make([]byte, 32)
chainMod := btcwire.DoubleSha256(pubkey)
for i := range xorbytes {
xorbytes[i] = chainMod[i] ^ chaincode[i]
}
oldPk, err := btcec.ParsePubKey(pubkey, btcec.S256())
if err != nil {
return nil, err
}
newX, newY := btcec.S256().ScalarMult(oldPk.X, oldPk.Y, xorbytes)
if err != nil {
return nil, err
}
newPk := &ecdsa.PublicKey{
Curve: btcec.S256(),
X: newX,
Y: newY,
}
if len(pubkey) == 65 {
return (*btcec.PublicKey)(newPk).SerializeUncompressed(), nil
}
return (*btcec.PublicKey)(newPk).SerializeCompressed(), nil
}
type version struct {
major byte
minor byte
bugfix byte
autoincrement byte
}
// Enforce that version satisifies the io.ReaderFrom and
// io.WriterTo interfaces.
var _ io.ReaderFrom = &version{}
var _ io.WriterTo = &version{}
// ReaderFromVersion is an io.ReaderFrom and io.WriterTo that
// can specify any particular wallet file format for reading
// depending on the wallet file version.
type ReaderFromVersion interface {
ReadFromVersion(version, io.Reader) (int64, error)
io.WriterTo
}
func (v version) String() string {
str := fmt.Sprintf("%d.%d", v.major, v.minor)
if v.bugfix != 0x00 || v.autoincrement != 0x00 {
str += fmt.Sprintf(".%d", v.bugfix)
}
if v.autoincrement != 0x00 {
str += fmt.Sprintf(".%d", v.autoincrement)
}
return str
}
func (v version) Uint32() uint32 {
return uint32(v.major)<<6 | uint32(v.minor)<<4 | uint32(v.bugfix)<<2 | uint32(v.autoincrement)
}
func (v *version) ReadFrom(r io.Reader) (int64, error) {
// Read 4 bytes for the version.
versBytes := make([]byte, 4)
n, err := r.Read(versBytes)
if err != nil {
return int64(n), err
}
v.major = versBytes[0]
v.minor = versBytes[1]
v.bugfix = versBytes[2]
v.autoincrement = versBytes[3]
return int64(n), nil
}
func (v *version) WriteTo(w io.Writer) (int64, error) {
// Write 4 bytes for the version.
versBytes := []byte{
v.major,
v.minor,
v.bugfix,
v.autoincrement,
}
n, err := w.Write(versBytes)
return int64(n), err
}
// LT returns whether v is an earlier version than v2.
func (v version) LT(v2 version) bool {
switch {
case v.major < v2.major:
return true
case v.minor < v2.minor:
return true
case v.bugfix < v2.bugfix:
return true
case v.autoincrement < v2.autoincrement:
return true
default:
return false
}
}
// EQ returns whether v2 is an equal version to v.
func (v version) EQ(v2 version) bool {
switch {
case v.major != v2.major:
return false
case v.minor != v2.minor:
return false
case v.bugfix != v2.bugfix:
return false
case v.autoincrement != v2.autoincrement:
return false
default:
return true
}
}
// GT returns whether v is a later version than v2.
func (v version) GT(v2 version) bool {
switch {
case v.major > v2.major:
return true
case v.minor > v2.minor:
return true
case v.bugfix > v2.bugfix:
return true
case v.autoincrement > v2.autoincrement:
return true
default:
return false
}
}
// Various versions.
var (
// VersArmory is the latest version used by Armory.
VersArmory = version{1, 35, 0, 0}
// Vers20LastBlocks is the version where wallet files now hold
// the 20 most recently seen block hashes.
Vers20LastBlocks = version{1, 36, 0, 0}
// VersCurrent is the current wallet file version.
VersCurrent = Vers20LastBlocks
)
type varEntries []io.WriterTo
func (v *varEntries) WriteTo(w io.Writer) (n int64, err error) {
ss := []io.WriterTo(*v)
var written int64
for _, s := range ss {
var err error
if written, err = s.WriteTo(w); err != nil {
return n + written, err
}
n += written
}
return n, nil
}
func (v *varEntries) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// Remove any previous entries.
*v = nil
wts := []io.WriterTo(*v)
// Keep reading entries until an EOF is reached.
for {
var header entryHeader
if read, err = binaryRead(r, binary.LittleEndian, &header); err != nil {
// EOF here is not an error.
if err == io.EOF {
return n + read, nil
}
return n + read, err
}
n += read
var wt io.WriterTo
switch header {
case addrHeader:
var entry addrEntry
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
wt = &entry
case addrCommentHeader:
var entry addrCommentEntry
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
wt = &entry
case txCommentHeader:
var entry txCommentEntry
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
wt = &entry
case deletedHeader:
var entry deletedEntry
if read, err = entry.ReadFrom(r); err != nil {
return n + read, err
}
n += read
default:
return n, fmt.Errorf("unknown entry header: %d", uint8(header))
}
if wt != nil {
wts = append(wts, wt)
*v = wts
}
}
}
type transactionHashKey string
type comment []byte
// Wallet represents an btcwallet wallet in memory. It implements
// the io.ReaderFrom and io.WriterTo interfaces to read from and
// write to any type of byte streams, including files.
type Wallet struct {
net btcwire.BitcoinNet
flags walletFlags
uniqID [6]byte
createDate int64
name [32]byte
desc [256]byte
highestUsed int64
kdfParams kdfParameters
keyGenerator btcAddress
// These are non-standard and fit in the extra 1024 bytes between the
// root address and the appended entries.
recent recentBlocks
addrMap map[btcutil.AddressPubKeyHash]*btcAddress
addrCommentMap map[btcutil.AddressPubKeyHash]comment
txCommentMap map[transactionHashKey]comment
// The rest of the fields in this struct are not serialized.
secret []byte
chainIdxMap map[int64]*btcutil.AddressPubKeyHash
importedAddrs []*btcAddress
lastChainIdx int64
missingKeysStart int64
}
// NewWallet creates and initializes a new Wallet. name's and
// desc's binary representation must not exceed 32 and 256 bytes,
// respectively. All address private keys are encrypted with passphrase.
// The wallet is returned locked.
func NewWallet(name, desc string, passphrase []byte, net btcwire.BitcoinNet,
createdAt *BlockStamp, keypoolSize uint) (*Wallet, error) {
// Check sizes of inputs.
if len([]byte(name)) > 32 {
return nil, errors.New("name exceeds 32 byte maximum size")
}
if len([]byte(desc)) > 256 {
return nil, errors.New("desc exceeds 256 byte maximum size")
}
// Check for a valid network.
if !(net == btcwire.MainNet || net == btcwire.TestNet3) {
return nil, errors.New("wallets must use mainnet or testnet3")
}
// Randomly-generate rootkey and chaincode.
rootkey, chaincode := make([]byte, 32), make([]byte, 32)
if _, err := rand.Read(rootkey); err != nil {
return nil, err
}
if _, err := rand.Read(chaincode); err != nil {
return nil, err
}
// Create new root address from key and chaincode.
root, err := newRootBtcAddress(rootkey, nil, chaincode, createdAt)
if err != nil {
return nil, err
}
// Verify root address keypairs.
if err := root.verifyKeypairs(); err != nil {
return nil, err
}
// Compute AES key and encrypt root address.
kdfp, err := computeKdfParameters(defaultKdfComputeTime, defaultKdfMaxMem)
if err != nil {
return nil, err
}
aeskey := Key([]byte(passphrase), kdfp)
if err := root.encrypt(aeskey); err != nil {
return nil, err
}
// Create and fill wallet.
w := &Wallet{
// TODO(jrick): not sure we will need uniqID, but would be good for
// compat with armory.
net: net,
flags: walletFlags{
useEncryption: true,
watchingOnly: false,
},
createDate: time.Now().Unix(),
highestUsed: rootKeyChainIdx,
kdfParams: *kdfp,
keyGenerator: *root,
recent: recentBlocks{
lastHeight: createdAt.Height,
hashes: []*btcwire.ShaHash{
&createdAt.Hash,
},
},
addrMap: make(map[btcutil.AddressPubKeyHash]*btcAddress),
addrCommentMap: make(map[btcutil.AddressPubKeyHash]comment),
txCommentMap: make(map[transactionHashKey]comment),
chainIdxMap: make(map[int64]*btcutil.AddressPubKeyHash),
lastChainIdx: rootKeyChainIdx,
secret: aeskey,
}
copy(w.name[:], []byte(name))
copy(w.desc[:], []byte(desc))
// Add root address to maps.
w.addrMap[*w.keyGenerator.address(net)] = &w.keyGenerator
w.chainIdxMap[rootKeyChainIdx] = w.keyGenerator.address(net)
// Fill keypool.
if err := w.extendKeypool(keypoolSize, createdAt); err != nil {
return nil, err
}
// Wallet must be returned locked.
if err := w.Lock(); err != nil {
return nil, err
}
return w, nil
}
// Name returns the name of a wallet. This name is used as the
// account name for btcwallet JSON methods.
func (w *Wallet) Name() string {
last := len(w.name[:])
for i, b := range w.name[:] {
if b == 0x00 {
last = i
break
}
}
return string(w.name[:last])
}
// ReadFrom reads data from a io.Reader and saves it to a Wallet,
// returning the number of bytes read and any errors encountered.
func (w *Wallet) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
w.addrMap = make(map[btcutil.AddressPubKeyHash]*btcAddress)
w.addrCommentMap = make(map[btcutil.AddressPubKeyHash]comment)
w.chainIdxMap = make(map[int64]*btcutil.AddressPubKeyHash)
w.txCommentMap = make(map[transactionHashKey]comment)
var id [8]byte
var vers version
var appendedEntries varEntries
// Iterate through each entry needing to be read. If data
// implements io.ReaderFrom, use its ReadFrom func. Otherwise,
// data is a pointer to a fixed sized value.
datas := []interface{}{
&id,
&vers,
&w.net,
&w.flags,
&w.uniqID,
&w.createDate,
&w.name,
&w.desc,
&w.highestUsed,
&w.kdfParams,
make([]byte, 256),
&w.keyGenerator,
newUnusedSpace(1024, &w.recent),
&appendedEntries,
}
for _, data := range datas {
var err error
switch d := data.(type) {
case ReaderFromVersion:
read, err = d.ReadFromVersion(vers, r)
case io.ReaderFrom:
read, err = d.ReadFrom(r)
default:
read, err = binaryRead(r, binary.LittleEndian, d)
}
n += read
if err != nil {
return n, err
}
}
if id != fileID {
return n, errors.New("unknown file ID")
}
// Add root address to address map.
rootAddr := w.keyGenerator.address(w.net)
w.addrMap[*rootAddr] = &w.keyGenerator
w.chainIdxMap[rootKeyChainIdx] = rootAddr
// Fill unserializied fields.
wts := ([]io.WriterTo)(appendedEntries)
for _, wt := range wts {
switch e := wt.(type) {
case *addrEntry:
addr := e.addr.address(w.net)
w.addrMap[*addr] = &e.addr
if e.addr.chainIndex == importedKeyChainIdx {
w.importedAddrs = append(w.importedAddrs, &e.addr)
} else {
w.chainIdxMap[e.addr.chainIndex] = addr
if w.lastChainIdx < e.addr.chainIndex {
w.lastChainIdx = e.addr.chainIndex
}
}
// If the private keys have not ben created yet, mark the
// earliest so all can be created on next wallet unlock.
if e.addr.flags.createPrivKeyNextUnlock {
if w.missingKeysStart < e.addr.chainIndex {
w.missingKeysStart = e.addr.chainIndex
}
}
case *addrCommentEntry:
addr := e.address(w.net)
w.addrCommentMap[*addr] = comment(e.comment)
case *txCommentEntry:
txKey := transactionHashKey(e.txHash[:])
w.txCommentMap[txKey] = comment(e.comment)
default:
return n, errors.New("unknown appended entry")
}
}
return n, nil
}
// WriteTo serializes a Wallet and writes it to a io.Writer,
// returning the number of bytes written and any errors encountered.
func (w *Wallet) WriteTo(wtr io.Writer) (n int64, err error) {
var wts []io.WriterTo
var chainedAddrs = make([]io.WriterTo, len(w.chainIdxMap)-1)
var importedAddrs []io.WriterTo
for addr, btcAddr := range w.addrMap {
e := &addrEntry{
addr: *btcAddr,
}
copy(e.pubKeyHash160[:], addr.ScriptAddress())
if btcAddr.chainIndex >= 0 {
// Chained addresses are sorted. This is
// kind of nice but probably isn't necessary.
chainedAddrs[btcAddr.chainIndex] = e
} else if btcAddr.chainIndex == importedKeyChainIdx {
// No order for imported addresses.
importedAddrs = append(importedAddrs, e)
}
}
wts = append(chainedAddrs, importedAddrs...)
for addr, comment := range w.addrCommentMap {
e := &addrCommentEntry{
comment: []byte(comment),
}
copy(e.pubKeyHash160[:], addr.ScriptAddress())
wts = append(wts, e)
}
for hash, comment := range w.txCommentMap {
e := &txCommentEntry{
comment: []byte(comment),
}
copy(e.txHash[:], []byte(hash))
wts = append(wts, e)
}
appendedEntries := varEntries(wts)
// Iterate through each entry needing to be written. If data
// implements io.WriterTo, use its WriteTo func. Otherwise,
// data is a pointer to a fixed size value.
datas := []interface{}{
&fileID,
&VersCurrent,
&w.net,
&w.flags,
&w.uniqID,
&w.createDate,
&w.name,
&w.desc,
&w.highestUsed,
&w.kdfParams,
make([]byte, 256),
&w.keyGenerator,
newUnusedSpace(1024, &w.recent),
&appendedEntries,
}
var written int64
for _, data := range datas {
if s, ok := data.(io.WriterTo); ok {
written, err = s.WriteTo(wtr)
} else {
written, err = binaryWrite(wtr, binary.LittleEndian, data)
}
n += written
if err != nil {
return n, err
}
}
return n, nil
}
// Unlock derives an AES key from passphrase and wallet's KDF
// parameters and unlocks the root key of the wallet. If
// the unlock was successful, the wallet's secret key is saved,
// allowing the decryption of any encrypted private key. Any
// addresses created while the wallet was locked without private
// keys are created at this time.
func (w *Wallet) Unlock(passphrase []byte) error {
// Derive key from KDF parameters and passphrase.
key := Key(passphrase, &w.kdfParams)
// Unlock root address with derived key.
if _, err := w.keyGenerator.unlock(key); err != nil {
return err
}
// If unlock was successful, save the secret key.
w.secret = key
return w.createMissingPrivateKeys()
}
// Lock performs a best try effort to remove and zero all secret keys
// associated with the wallet.
func (w *Wallet) Lock() (err error) {
// Remove clear text passphrase from wallet.
if len(w.secret) != 32 {
err = ErrWalletLocked
} else {
zero(w.secret)
w.secret = nil
}
// Remove clear text private keys from all address entries.
for _, addr := range w.addrMap {
zero(addr.privKeyCT)
addr.privKeyCT = nil
}
return err
}
func zero(b []byte) {
for i := range b {
b[i] = 0
}
}
// IsLocked returns whether a wallet is unlocked (in which case the
// key is saved in memory), or locked.
func (w *Wallet) IsLocked() bool {
return len(w.secret) != 32
}
// Version returns a wallet's version as a string and int.
func (w *Wallet) Version() (string, int) {
return "", 0
}
// NextChainedAddress attempts to get the next chained address.
// If there are addresses available in the keypool, the next address
// is used. If not and the wallet is unlocked, the keypool is extended.
// If locked, a new address's pubkey is chained off the last pubkey
// and added to the wallet.
func (w *Wallet) NextChainedAddress(bs *BlockStamp,
keypoolSize uint) (*btcutil.AddressPubKeyHash, error) {
// Attempt to get address hash of next chained address.
nextAPKH, ok := w.chainIdxMap[w.highestUsed+1]
if !ok {
// Extending the keypool requires an unlocked wallet.
if len(w.secret) == 32 {
// Key is available, extend keypool.
if err := w.extendKeypool(keypoolSize, bs); err != nil {
return nil, err
}
} else {
if err := w.extendLockedWallet(bs); err != nil {
return nil, err
}
}
// Should be added to the internal maps, try lookup again.
nextAPKH, ok = w.chainIdxMap[w.highestUsed+1]
if !ok {
return nil, errors.New("chain index map inproperly updated")
}
}
// Look up address.
addr, ok := w.addrMap[*nextAPKH]
if !ok {
return nil, errors.New("cannot find generated address")
}
w.highestUsed++
// Create and return payment address for address hash.
return addr.address(w.net), nil
}
// LastChainedAddress returns the most recently requested chained
// address from calling NextChainedAddress, or the root address if
// no chained addresses have been requested.
func (w *Wallet) LastChainedAddress() btcutil.Address {
return w.chainIdxMap[w.highestUsed]
}
// extendKeypool grows the keypool by n addresses.
func (w *Wallet) extendKeypool(n uint, bs *BlockStamp) error {
// Get last chained address. New chained addresses will be
// chained off of this address's chaincode and private key.
a := w.chainIdxMap[w.lastChainIdx]
addr, ok := w.addrMap[*a]
if !ok {
return errors.New("expected last chained address not found")
}
privkey, err := addr.unlock(w.secret)
if err != nil {
return err
}
cc := addr.chaincode[:]
// Create n encrypted addresses and add each to the wallet's
// bookkeeping maps.
for i := uint(0); i < n; i++ {
privkey, err = ChainedPrivKey(privkey, addr.pubKey, cc)
if err != nil {
return err
}
newaddr, err := newBtcAddress(privkey, nil, bs, true)
if err != nil {
return err
}
if err := newaddr.verifyKeypairs(); err != nil {
return err
}
if err = newaddr.encrypt(w.secret); err != nil {
return err
}
a := newaddr.address(w.net)
w.addrMap[*a] = newaddr
newaddr.chainIndex = addr.chainIndex + 1
w.chainIdxMap[newaddr.chainIndex] = a
w.lastChainIdx++
// armory does this.. but all the chaincodes are equal so why
// not use the root's?
copy(newaddr.chaincode[:], cc)
addr = newaddr
}
return nil
}
// extendLockedWallet creates one new address without a private key
// (allowing for extending the address chain from a locked wallet)
// chained from the last used chained address and adds the address to
// the wallet's internal bookkeeping structures. This function should
// not be called unless the keypool has been depleted.
func (w *Wallet) extendLockedWallet(bs *BlockStamp) error {
a := w.chainIdxMap[w.lastChainIdx]
addr, ok := w.addrMap[*a]
if !ok {
return errors.New("expected last chained address not found")
}
cc := addr.chaincode[:]
prevPubkey := addr.pubKey
nextPubkey, err := ChainedPubKey(prevPubkey, cc)
if err != nil {
return err
}
newaddr, err := newBtcAddressWithoutPrivkey(nextPubkey, nil, bs)
if err != nil {
return err
}
a = newaddr.address(w.net)
w.addrMap[*a] = newaddr
newaddr.chainIndex = addr.chainIndex + 1
w.chainIdxMap[newaddr.chainIndex] = a
w.lastChainIdx++
copy(newaddr.chaincode[:], cc)
if w.missingKeysStart == 0 {
w.missingKeysStart = newaddr.chainIndex
}
return nil
}
func (w *Wallet) createMissingPrivateKeys() error {
idx := w.missingKeysStart
if idx == 0 {
return nil
}
// Lookup previous address.
apkh, ok := w.chainIdxMap[idx-1]
if !ok {
return errors.New("missing previous chained address")
}
prevAddr := w.addrMap[*apkh]
prevPrivKey, err := prevAddr.unlock(w.secret)
if err != nil {
return err
}
for i := idx; ; i++ {
// Get the next private key for the ith address in the address chain.
ithPrivKey, err := ChainedPrivKey(prevPrivKey, prevAddr.pubKey,
prevAddr.chaincode[:])
if err != nil {
return err
}
// Get the address with the missing private key, set, and
// encrypt.
apkh, ok := w.chainIdxMap[i]
if !ok {
// Finished.
break
}
addr := w.addrMap[*apkh]
addr.privKeyCT = ithPrivKey
if err := addr.encrypt(w.secret); err != nil {
return err
}
// Set previous address and private key for next iteration.
prevAddr = addr
prevPrivKey = ithPrivKey
}
w.missingKeysStart = 0
return nil
}
// AddressKey returns the private key for a payment address stored
// in a wallet. This can fail if the payment address is for a different
// Bitcoin network than what this wallet uses, the address is not
// contained in the wallet, the address does not include a public and
// private key, or if the wallet is locked.
func (w *Wallet) AddressKey(a btcutil.Address) (key *ecdsa.PrivateKey, err error) {
// Currently, only P2PKH addresses are supported. This should
// be extended to a switch-case statement when support for other
// addresses are added.
addr, ok := a.(*btcutil.AddressPubKeyHash)
if !ok {
return nil, errors.New("unsupported address")
}
// Lookup address from map.
btcaddr, ok := w.addrMap[*addr]
if !ok {
return nil, ErrAddressNotFound
}
// Both the pubkey and encrypted privkey must be recorded to return
// the private key. Error if neither are saved.
if !btcaddr.flags.hasPubKey {
return nil, errors.New("no public key for address")
}
if !btcaddr.flags.hasPrivKey {
return nil, errors.New("no private key for address")
}
// Parse public key.
pubkey, err := btcec.ParsePubKey(btcaddr.pubKey, btcec.S256())
if err != nil {
return nil, err
}
// Wallet must be unlocked to decrypt the private key.
if len(w.secret) != 32 {
return nil, ErrWalletLocked
}
// Unlock address with wallet secret. unlock returns a copy of the
// clear text private key, and may be used safely even during an address
// lock.
privKeyCT, err := btcaddr.unlock(w.secret)
if err != nil {
return nil, err
}
return &ecdsa.PrivateKey{
PublicKey: *pubkey,
D: new(big.Int).SetBytes(privKeyCT),
}, nil
}
// AddressInfo returns an AddressInfo structure for an address in a wallet.
func (w *Wallet) AddressInfo(a btcutil.Address) (*AddressInfo, error) {
// Currently, only P2PKH addresses are supported. This should
// be extended to a switch-case statement when support for other
// addresses are added.
addr, ok := a.(*btcutil.AddressPubKeyHash)
if !ok {
return nil, errors.New("unsupported address")
}
// Look up address by address hash.
btcaddr, ok := w.addrMap[*addr]
if !ok {
return nil, ErrAddressNotFound
}
return btcaddr.info(w.net)
}
// Net returns the bitcoin network identifier for this wallet.
func (w *Wallet) Net() btcwire.BitcoinNet {
return w.net
}
// SetSyncedWith marks the wallet to be in sync with the block
// described by height and hash.
func (w *Wallet) SetSyncedWith(bs *BlockStamp) {
// Check if we're trying to rollback the last seen history.
// If so, and this bs is already saved, remove anything
// after and return. Otherwire, remove previous hashes.
if bs.Height < w.recent.lastHeight {
maybeIdx := len(w.recent.hashes) - 1 - int(w.recent.lastHeight-bs.Height)
if maybeIdx >= 0 && maybeIdx < len(w.recent.hashes) &&
*w.recent.hashes[maybeIdx] == bs.Hash {
w.recent.lastHeight = bs.Height
// subslice out the removed hashes.
w.recent.hashes = w.recent.hashes[:maybeIdx]
return
}
w.recent.hashes = nil
}
if bs.Height != w.recent.lastHeight+1 {
w.recent.hashes = nil
}
w.recent.lastHeight = bs.Height
blockSha := new(btcwire.ShaHash)
copy(blockSha[:], bs.Hash[:])
if len(w.recent.hashes) == 20 {
// Make room for the most recent hash.
copy(w.recent.hashes, w.recent.hashes[1:])
// Set new block in the last position.
w.recent.hashes[19] = blockSha
} else {
w.recent.hashes = append(w.recent.hashes, blockSha)
}
}
// SyncedWith returns the height and hash of the block the wallet is
// currently marked to be in sync with.
func (w *Wallet) SyncedWith() *BlockStamp {
nHashes := len(w.recent.hashes)
if nHashes == 0 || w.recent.lastHeight == -1 {
return &BlockStamp{
Height: -1,
}
}
lastSha := w.recent.hashes[nHashes-1]
return &BlockStamp{
Height: w.recent.lastHeight,
Hash: *lastSha,
}
}
// NewIterateRecentBlocks returns an iterator for recently-seen blocks.
// The iterator starts at the most recently-added block, and Prev should
// be used to access earlier blocks.
func (w *Wallet) NewIterateRecentBlocks() RecentBlockIterator {
return w.recent.NewIterator()
}
// EarliestBlockHeight returns the height of the blockchain for when any
// wallet address first appeared. This will usually be the block height
// at the time of wallet creation, unless a private key with an earlier
// block height was imported into the wallet. This is needed when
// performing a full rescan to prevent unnecessary rescanning before
// wallet addresses first appeared.
func (w *Wallet) EarliestBlockHeight() int32 {
height := w.keyGenerator.firstBlock
// Imported keys will be the only ones that may have an earlier
// blockchain height. Check each and set the returned height
for _, addr := range w.importedAddrs {
if addr.firstBlock < height {
height = addr.firstBlock
// Can't go any lower than 0.
if height == 0 {
break
}
}
}
return height
}
// SetBetterEarliestBlockHeight sets a better earliest block height.
// At wallet creation time, a earliest block is guessed, but this
// could be incorrect if btcd is out of sync. This function can be
// used to correct a previous guess with a better value.
func (w *Wallet) SetBetterEarliestBlockHeight(height int32) {
if height > w.keyGenerator.firstBlock {
w.keyGenerator.firstBlock = height
}
}
// ImportPrivateKey creates a new encrypted btcAddress with a
// user-provided private key and adds it to the wallet. If the
// import is successful, the payment address string is returned.
func (w *Wallet) ImportPrivateKey(privkey []byte, compressed bool, bs *BlockStamp) (string, error) {
// First, must check that the key being imported will not result
// in a duplicate address.
pkh := btcutil.Hash160(pubkeyFromPrivkey(privkey, compressed))
// Will always be valid inputs so omit error check.
apkh, err := btcutil.NewAddressPubKeyHash(pkh, w.Net())
if err != nil {
return "", err
}
if _, ok := w.addrMap[*apkh]; ok {
return "", ErrDuplicate
}
// The wallet must be unlocked to encrypt the imported private key.
if len(w.secret) != 32 {
return "", ErrWalletLocked
}
// Create new address with this private key.
btcaddr, err := newBtcAddress(privkey, nil, bs, compressed)
if err != nil {
return "", err
}
btcaddr.chainIndex = importedKeyChainIdx
// Encrypt imported address with the derived AES key.
if err = btcaddr.encrypt(w.secret); err != nil {
return "", err
}
// Add address to wallet's bookkeeping structures. Adding to
// the map will result in the imported address being serialized
// on the next WriteTo call.
w.addrMap[*btcaddr.address(w.net)] = btcaddr
w.importedAddrs = append(w.importedAddrs, btcaddr)
// Create and return encoded payment address string. Error is
// ignored as the length of the pubkey hash and net will always
// be valid.
addr, _ := btcutil.NewAddressPubKeyHash(btcaddr.pubKeyHash[:], w.Net())
return addr.String(), nil
}
// CreateDate returns the Unix time of the wallet creation time. This
// is used to compare the wallet creation time against block headers and
// set a better minimum block height of where to being rescans.
func (w *Wallet) CreateDate() int64 {
return w.createDate
}
// AddressInfo holds information regarding an address needed to manage
// a complete wallet.
type AddressInfo struct {
btcutil.Address
AddrHash string
Compressed bool
FirstBlock int32
Imported bool
Pubkey string
}
// SortedActiveAddresses returns all wallet addresses that have been
// requested to be generated. These do not include unused addresses in
// the key pool. Use this when ordered addresses are needed. Otherwise,
// ActiveAddresses is preferred.
func (w *Wallet) SortedActiveAddresses() []*AddressInfo {
addrs := make([]*AddressInfo, 0,
w.highestUsed+int64(len(w.importedAddrs))+1)
for i := int64(rootKeyChainIdx); i <= w.highestUsed; i++ {
a := w.chainIdxMap[i]
info, err := w.addrMap[*a].info(w.Net())
if err == nil {
addrs = append(addrs, info)
}
}
for _, addr := range w.importedAddrs {
info, err := addr.info(w.Net())
if err == nil {
addrs = append(addrs, info)
}
}
return addrs
}
// ActiveAddresses returns a map between active payment addresses
// and their full info. These do not include unused addresses in the
// key pool. If addresses must be sorted, use SortedActiveAddresses.
func (w *Wallet) ActiveAddresses() map[btcutil.Address]*AddressInfo {
addrs := make(map[btcutil.Address]*AddressInfo)
for i := int64(rootKeyChainIdx); i <= w.highestUsed; i++ {
a := w.chainIdxMap[i]
info, err := w.addrMap[*a].info(w.Net())
if err == nil {
addrs[info.Address] = info
}
}
for _, addr := range w.importedAddrs {
info, err := addr.info(w.Net())
if err == nil {
addrs[info.Address] = info
}
}
return addrs
}
/*
// unlockAddress decrypts and stores a pointer to an address's private
// key, failing if the address is not encrypted, or the provided key is
// incorrect. If the requested address's private key has not yet been
// saved, the previous chained address is looked up and the private key
// is saved and encrypted. The returned clear text private key will always
// be a copy that may be safely used by the caller without worrying about it
// being zeroed during an address lock.
func (w *Wallet) unlockAddress(a *btcAddress, key []byte) (privKeyCT []byte, err error) {
if !a.flags.encrypted {
return nil, errors.New("unable to unlock unencrypted address")
}
if a.flags.createPrivKeyNextUnlock {
// Look up previous chained address and unlock its private key.
prevAPKH, ok := w.chainIdxMap[a.chainIndex-1]
if !ok {
return nil, errors.New("cannot determine previous address to create privkey")
}
prevAddr := w.addrMap[*prevAPKH]
prevPrivKey, err := w.unlockAddress(prevAddr, key)
if err != nil {
return nil, err
}
// Generate this address's private key.
privkey, err := ChainedPrivKey(prevPrivKey, prevAddr.pubKey,
prevAddr.chaincode[:])
if err != nil {
return nil, err
}
a.privKeyCT = privkey
// Encrypt clear text private key.
if err := a.encrypt(key); err != nil {
return nil, err
}
a.flags.hasPrivKey = true
a.flags.createPrivKeyNextUnlock = false
}
return a.unlock(key)
}
*/
type walletFlags struct {
useEncryption bool
watchingOnly bool
}
func (wf *walletFlags) ReadFrom(r io.Reader) (n int64, err error) {
raw := make([]byte, 8)
n, err = binaryRead(r, binary.LittleEndian, raw)
wf.useEncryption = raw[0] != 0
wf.watchingOnly = raw[1] != 0
return n, err
}
func (wf *walletFlags) WriteTo(w io.Writer) (n int64, err error) {
raw := make([]byte, 8)
if wf.useEncryption {
raw[0] = 1
}
if wf.watchingOnly {
raw[1] = 1
}
return binaryWrite(w, binary.LittleEndian, raw)
}
type addrFlags struct {
hasPrivKey bool
hasPubKey bool
encrypted bool
createPrivKeyNextUnlock bool // unimplemented in btcwallet
compressed bool
}
func (af *addrFlags) ReadFrom(r io.Reader) (int64, error) {
var b [8]byte
n, err := r.Read(b[:])
if err != nil {
return int64(n), err
}
af.hasPrivKey = b[0]&(1<<0) != 0
af.hasPubKey = b[0]&(1<<1) != 0
af.encrypted = b[0]&(1<<2) != 0
af.createPrivKeyNextUnlock = b[0]&(1<<3) != 0
af.compressed = b[0]&(1<<4) != 0
// Currently (at least until watching-only wallets are implemented)
// btcwallet shall refuse to open any unencrypted addresses. This
// check only makes sense if there is a private key to encrypt, which
// there may not be if the keypool was extended from just the last
// public key and no private keys were written.
if af.hasPrivKey && !af.encrypted {
return int64(n), errors.New("private key is unencrypted")
}
return int64(n), nil
}
func (af *addrFlags) WriteTo(w io.Writer) (int64, error) {
var b [8]byte
if af.hasPrivKey {
b[0] |= 1 << 0
}
if af.hasPubKey {
b[0] |= 1 << 1
}
if af.hasPrivKey && !af.encrypted {
// We only support encrypted privkeys.
return 0, errors.New("address must be encrypted")
}
if af.encrypted {
b[0] |= 1 << 2
}
if af.createPrivKeyNextUnlock {
b[0] |= 1 << 3
}
if af.compressed {
b[0] |= 1 << 4
}
n, err := w.Write(b[:])
return int64(n), err
}
// recentBlocks holds at most the last 20 seen block hashes as well as
// the block height of the most recently seen block.
type recentBlocks struct {
hashes []*btcwire.ShaHash
lastHeight int32
}
type blockIterator struct {
height int32
index int
rb *recentBlocks
}
func (rb *recentBlocks) ReadFromVersion(v version, r io.Reader) (int64, error) {
if !v.LT(Vers20LastBlocks) {
// Use current version.
return rb.ReadFrom(r)
}
// Old file versions only saved the most recently seen
// block height and hash, not the last 20.
var read int64
var syncedBlockHash btcwire.ShaHash
// Read height.
heightBytes := make([]byte, 4) // 4 bytes for a int32
n, err := r.Read(heightBytes)
if err != nil {
return read + int64(n), err
}
read += int64(n)
rb.lastHeight = int32(binary.LittleEndian.Uint32(heightBytes))
// If height is -1, the last synced block is unknown, so don't try
// to read a block hash.
if rb.lastHeight == -1 {
rb.hashes = nil
return read, nil
}
// Read block hash.
n, err = r.Read(syncedBlockHash[:])
if err != nil {
return read + int64(n), err
}
read += int64(n)
rb.hashes = []*btcwire.ShaHash{
&syncedBlockHash,
}
return read, nil
}
func (rb *recentBlocks) ReadFrom(r io.Reader) (int64, error) {
var read int64
// Read number of saved blocks. This should not exceed 20.
nBlockBytes := make([]byte, 4) // 4 bytes for a uint32
n, err := r.Read(nBlockBytes)
if err != nil {
return read + int64(n), err
}
read += int64(n)
nBlocks := binary.LittleEndian.Uint32(nBlockBytes)
if nBlocks > 20 {
return read, errors.New("number of last seen blocks exceeds maximum of 20")
}
// If number of blocks is 0, our work here is done.
if nBlocks == 0 {
rb.lastHeight = -1
rb.hashes = nil
return read, nil
}
// Read most recently seen block height.
heightBytes := make([]byte, 4) // 4 bytes for a int32
n, err = r.Read(heightBytes)
if err != nil {
return read + int64(n), err
}
read += int64(n)
height := int32(binary.LittleEndian.Uint32(heightBytes))
// height should not be -1 (or any other negative number)
// since at this point we should be reading in at least one
// known block.
if height < 0 {
return read, errors.New("expected a block but specified height is negative")
}
// Set last seen height.
rb.lastHeight = height
// Read nBlocks block hashes. Hashes are expected to be in
// order of oldest to newest, but there's no way to check
// that here.
rb.hashes = make([]*btcwire.ShaHash, 0, nBlocks)
for i := uint32(0); i < nBlocks; i++ {
blockSha := new(btcwire.ShaHash)
n, err := r.Read(blockSha[:])
if err != nil {
return read + int64(n), err
}
read += int64(n)
rb.hashes = append(rb.hashes, blockSha)
}
return read, nil
}
func (rb *recentBlocks) WriteTo(w io.Writer) (int64, error) {
var written int64
// Write number of saved blocks. This should not exceed 20.
nBlocks := uint32(len(rb.hashes))
if nBlocks > 20 {
return written, errors.New("number of last seen blocks exceeds maximum of 20")
}
if nBlocks != 0 && rb.lastHeight < 0 {
return written, errors.New("number of block hashes is positive, but height is negative")
}
if nBlocks == 0 && rb.lastHeight != -1 {
return written, errors.New("no block hashes available, but height is not -1")
}
nBlockBytes := make([]byte, 4) // 4 bytes for a uint32
binary.LittleEndian.PutUint32(nBlockBytes, nBlocks)
n, err := w.Write(nBlockBytes)
if err != nil {
return written + int64(n), err
}
written += int64(n)
// If number of blocks is 0, our work here is done.
if nBlocks == 0 {
return written, nil
}
// Write most recently seen block height.
heightBytes := make([]byte, 4) // 4 bytes for a int32
binary.LittleEndian.PutUint32(heightBytes, uint32(rb.lastHeight))
n, err = w.Write(heightBytes)
if err != nil {
return written + int64(n), err
}
written += int64(n)
// Write block hashes.
for _, hash := range rb.hashes {
n, err := w.Write(hash[:])
if err != nil {
return written + int64(n), err
}
written += int64(n)
}
return written, nil
}
// RecentBlockIterator is a type to iterate through recent-seen
// blocks.
type RecentBlockIterator interface {
Next() bool
Prev() bool
BlockStamp() *BlockStamp
}
func (rb *recentBlocks) NewIterator() RecentBlockIterator {
if rb.lastHeight == -1 {
return nil
}
return &blockIterator{
height: rb.lastHeight,
index: len(rb.hashes) - 1,
rb: rb,
}
}
func (it *blockIterator) Next() bool {
if it.index+1 >= len(it.rb.hashes) {
return false
}
it.index += 1
return true
}
func (it *blockIterator) Prev() bool {
if it.index-1 < 0 {
return false
}
it.index -= 1
return true
}
func (it *blockIterator) BlockStamp() *BlockStamp {
return &BlockStamp{
Height: it.rb.lastHeight - int32(len(it.rb.hashes)-1-it.index),
Hash: *it.rb.hashes[it.index],
}
}
// unusedSpace is a wrapper type to read or write one or more types
// that btcwallet fits into an unused space left by Armory's wallet file
// format.
type unusedSpace struct {
nBytes int // number of unused bytes that armory left.
rfvs []ReaderFromVersion
}
func newUnusedSpace(nBytes int, rfvs ...ReaderFromVersion) *unusedSpace {
return &unusedSpace{
nBytes: nBytes,
rfvs: rfvs,
}
}
func (u *unusedSpace) ReadFromVersion(v version, r io.Reader) (int64, error) {
var read int64
for _, rfv := range u.rfvs {
n, err := rfv.ReadFromVersion(v, r)
if err != nil {
return read + n, err
}
read += n
if read > int64(u.nBytes) {
return read, errors.New("read too much from armory's unused space")
}
}
// Read rest of actually unused bytes.
unused := make([]byte, u.nBytes-int(read))
n, err := r.Read(unused)
return read + int64(n), err
}
func (u *unusedSpace) WriteTo(w io.Writer) (int64, error) {
var written int64
for _, wt := range u.rfvs {
n, err := wt.WriteTo(w)
if err != nil {
return written + n, err
}
written += n
if written > int64(u.nBytes) {
return written, errors.New("wrote too much to armory's unused space")
}
}
// Write rest of actually unused bytes.
unused := make([]byte, u.nBytes-int(written))
n, err := w.Write(unused)
return written + int64(n), err
}
type btcAddress struct {
pubKeyHash [ripemd160.Size]byte
flags addrFlags
chaincode [32]byte
chainIndex int64
chainDepth int64 // currently unused (will use when extending a locked wallet)
initVector [16]byte
privKey [32]byte
pubKey publicKey
firstSeen int64
lastSeen int64
firstBlock int32
lastBlock int32
privKeyCT []byte // non-nil if unlocked.
}
const (
// Root address has a chain index of -1. Each subsequent
// chained address increments the index.
rootKeyChainIdx = -1
// Imported private keys are not part of the chain, and have a
// special index of -2.
importedKeyChainIdx = -2
)
const (
pubkeyCompressed byte = 0x2
pubkeyUncompressed byte = 0x4
)
type publicKey []byte
func (k *publicKey) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
var format byte
read, err = binaryRead(r, binary.LittleEndian, &format)
if err != nil {
return n + read, err
}
n += read
// Remove the oddness from the format
noodd := format
noodd &= ^byte(0x1)
var s []byte
switch noodd {
case pubkeyUncompressed:
// Read the remaining 64 bytes.
s = make([]byte, 64)
case pubkeyCompressed:
// Read the remaining 32 bytes.
s = make([]byte, 32)
default:
return n, errors.New("unrecognized pubkey format")
}
read, err = binaryRead(r, binary.LittleEndian, &s)
if err != nil {
return n + read, err
}
n += read
*k = append([]byte{format}, s...)
return
}
func (k *publicKey) WriteTo(w io.Writer) (n int64, err error) {
return binaryWrite(w, binary.LittleEndian, []byte(*k))
}
// newBtcAddress initializes and returns a new address. privkey must
// be 32 bytes. iv must be 16 bytes, or nil (in which case it is
// randomly generated).
func newBtcAddress(privkey, iv []byte, bs *BlockStamp, compressed bool) (addr *btcAddress, err error) {
if len(privkey) != 32 {
return nil, errors.New("private key is not 32 bytes")
}
if iv == nil {
iv = make([]byte, 16)
if _, err := rand.Read(iv); err != nil {
return nil, err
}
} else if len(iv) != 16 {
return nil, errors.New("init vector must be nil or 16 bytes large")
}
addr = &btcAddress{
flags: addrFlags{
hasPrivKey: true,
hasPubKey: true,
createPrivKeyNextUnlock: false,
compressed: compressed,
encrypted: false, // will be, but isn't yet.
},
firstSeen: time.Now().Unix(),
firstBlock: bs.Height,
}
addr.privKeyCT = privkey
copy(addr.initVector[:], iv)
addr.pubKey = pubkeyFromPrivkey(privkey, compressed)
copy(addr.pubKeyHash[:], btcutil.Hash160(addr.pubKey))
return addr, nil
}
// newBtcAddressWithoutPrivkey initializes and returns a new address with an
// unknown (at the time) private key that must be found later. pubkey must be
// 33 or 65 bytes, and iv must be 16 bytes or empty (in which case it is
// randomly generated).
func newBtcAddressWithoutPrivkey(pubkey, iv []byte, bs *BlockStamp) (addr *btcAddress, err error) {
var compressed bool
switch len(pubkey) {
case 33:
compressed = true
case 65:
compressed = false
default:
return nil, errors.New("incorrect pubkey length")
}
if len(iv) == 0 {
iv = make([]byte, 16)
if _, err := rand.Read(iv); err != nil {
return nil, err
}
} else if len(iv) != 16 {
return nil, errors.New("init vector must be nil or 16 bytes large")
}
addr = &btcAddress{
flags: addrFlags{
hasPrivKey: false,
hasPubKey: true,
createPrivKeyNextUnlock: true,
compressed: compressed,
encrypted: false,
},
firstSeen: time.Now().Unix(),
firstBlock: bs.Height,
}
copy(addr.initVector[:], iv)
addr.pubKey = pubkey
copy(addr.pubKeyHash[:], btcutil.Hash160(pubkey))
return addr, nil
}
// newRootBtcAddress generates a new address, also setting the
// chaincode and chain index to represent this address as a root
// address.
func newRootBtcAddress(privKey, iv, chaincode []byte,
bs *BlockStamp) (addr *btcAddress, err error) {
if len(chaincode) != 32 {
return nil, errors.New("chaincode is not 32 bytes")
}
// Create new btcAddress with provided inputs. This will
// always use a compressed pubkey.
addr, err = newBtcAddress(privKey, iv, bs, true)
if err != nil {
return nil, err
}
copy(addr.chaincode[:], chaincode)
addr.chainIndex = rootKeyChainIdx
return addr, err
}
// verifyKeypairs creates a signature using the parsed private key and
// verifies the signature with the parsed public key. If either of these
// steps fail, the keypair generation failed and any funds sent to this
// address will be unspendable. This step requires an unencrypted or
// unlocked btcAddress.
func (a *btcAddress) verifyKeypairs() error {
// Parse public key.
pubkey, err := btcec.ParsePubKey(a.pubKey, btcec.S256())
if err != nil {
return err
}
if len(a.privKeyCT) != 32 {
return errors.New("private key unavailable")
}
privkey := &ecdsa.PrivateKey{
PublicKey: *pubkey,
D: new(big.Int).SetBytes(a.privKeyCT),
}
data := "String to sign."
r, s, err := ecdsa.Sign(rand.Reader, privkey, []byte(data))
if err != nil {
return err
}
ok := ecdsa.Verify(&privkey.PublicKey, []byte(data), r, s)
if !ok {
return errors.New("ecdsa verification failed")
}
return nil
}
// ReadFrom reads an encrypted address from an io.Reader.
func (a *btcAddress) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// Checksums
var chkPubKeyHash uint32
var chkChaincode uint32
var chkInitVector uint32
var chkPrivKey uint32
var chkPubKey uint32
// Read serialized wallet into addr fields and checksums.
datas := []interface{}{
&a.pubKeyHash,
&chkPubKeyHash,
make([]byte, 4), // version
&a.flags,
&a.chaincode,
&chkChaincode,
&a.chainIndex,
&a.chainDepth,
&a.initVector,
&chkInitVector,
&a.privKey,
&chkPrivKey,
&a.pubKey,
&chkPubKey,
&a.firstSeen,
&a.lastSeen,
&a.firstBlock,
&a.lastBlock,
}
for _, data := range datas {
if rf, ok := data.(io.ReaderFrom); ok {
read, err = rf.ReadFrom(r)
} else {
read, err = binaryRead(r, binary.LittleEndian, data)
}
if err != nil {
return n + read, err
}
n += read
}
// Verify checksums, correct errors where possible.
checks := []struct {
data []byte
chk uint32
}{
{a.pubKeyHash[:], chkPubKeyHash},
{a.chaincode[:], chkChaincode},
{a.initVector[:], chkInitVector},
{a.privKey[:], chkPrivKey},
{a.pubKey, chkPubKey},
}
for i := range checks {
if err = verifyAndFix(checks[i].data, checks[i].chk); err != nil {
return n, err
}
}
return n, nil
}
func (a *btcAddress) WriteTo(w io.Writer) (n int64, err error) {
var written int64
datas := []interface{}{
&a.pubKeyHash,
walletHash(a.pubKeyHash[:]),
make([]byte, 4), //version
&a.flags,
&a.chaincode,
walletHash(a.chaincode[:]),
&a.chainIndex,
&a.chainDepth,
&a.initVector,
walletHash(a.initVector[:]),
&a.privKey,
walletHash(a.privKey[:]),
&a.pubKey,
walletHash(a.pubKey),
&a.firstSeen,
&a.lastSeen,
&a.firstBlock,
&a.lastBlock,
}
for _, data := range datas {
if wt, ok := data.(io.WriterTo); ok {
written, err = wt.WriteTo(w)
} else {
written, err = binaryWrite(w, binary.LittleEndian, data)
}
if err != nil {
return n + written, err
}
n += written
}
return n, nil
}
// encrypt attempts to encrypt an address's clear text private key,
// failing if the address is already encrypted or if the private key is
// not 32 bytes. If successful, the encryption flag is set.
func (a *btcAddress) encrypt(key []byte) error {
if a.flags.encrypted {
return errors.New("address already encrypted")
}
if len(a.privKeyCT) != 32 {
return errors.New("invalid clear text private key")
}
aesBlockEncrypter, err := aes.NewCipher(key)
if err != nil {
return err
}
aesEncrypter := cipher.NewCFBEncrypter(aesBlockEncrypter, a.initVector[:])
aesEncrypter.XORKeyStream(a.privKey[:], a.privKeyCT)
a.flags.hasPrivKey = true
a.flags.encrypted = true
return nil
}
// lock removes the reference this address holds to its clear text
// private key. This function fails if the address is not encrypted.
func (a *btcAddress) lock() error {
if !a.flags.encrypted {
return errors.New("unable to lock unencrypted address")
}
zero(a.privKeyCT)
a.privKeyCT = nil
return nil
}
// unlock decrypts and stores a pointer to an address's private key,
// failing if the address is not encrypted, or the provided key is
// incorrect. The returned clear text private key will always be a copy
// that may be safely used by the caller without worrying about it being
// zeroed during an address lock.
func (a *btcAddress) unlock(key []byte) (privKeyCT []byte, err error) {
if !a.flags.encrypted {
return nil, errors.New("unable to unlock unencrypted address")
}
// If secret is already saved, return a copy without performing a full
// unlock.
if len(a.privKeyCT) == 32 {
privKeyCT := make([]byte, 32)
copy(privKeyCT, a.privKeyCT)
return privKeyCT, nil
}
// Decrypt private key with AES key.
aesBlockDecrypter, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
aesDecrypter := cipher.NewCFBDecrypter(aesBlockDecrypter, a.initVector[:])
privkey := make([]byte, 32)
aesDecrypter.XORKeyStream(privkey, a.privKey[:])
// Generate new x, y from clear text private key and check that they
// match the recorded pubkey.
pubKey, err := btcec.ParsePubKey(a.pubKey, btcec.S256())
if err != nil {
return nil, fmt.Errorf("cannot parse pubkey: %s", err)
}
x, y := btcec.S256().ScalarBaseMult(privkey)
if x.Cmp(pubKey.X) != 0 || y.Cmp(pubKey.Y) != 0 {
return nil, errors.New("decryption failed")
}
privkeyCopy := make([]byte, 32)
copy(privkeyCopy, privkey)
a.privKeyCT = privkey
return privkeyCopy, nil
}
// TODO(jrick)
func (a *btcAddress) changeEncryptionKey(oldkey, newkey []byte) error {
return errors.New("unimplemented")
}
// address returns a btcutil.AddressPubKeyHash for a btcAddress.
func (a *btcAddress) address(net btcwire.BitcoinNet) *btcutil.AddressPubKeyHash {
// error is not returned because the hash will always be 20
// bytes, and net is assumed to be valid.
addr, _ := btcutil.NewAddressPubKeyHash(a.pubKeyHash[:], net)
return addr
}
// info returns information about a btcAddress stored in a AddressInfo
// struct.
func (a *btcAddress) info(net btcwire.BitcoinNet) (*AddressInfo, error) {
address := a.address(net)
return &AddressInfo{
Address: address,
AddrHash: string(a.pubKeyHash[:]),
Compressed: a.flags.compressed,
FirstBlock: a.firstBlock,
Imported: a.chainIndex == importedKeyChainIdx,
Pubkey: hex.EncodeToString(a.pubKey),
}, nil
}
func walletHash(b []byte) uint32 {
sum := btcwire.DoubleSha256(b)
return binary.LittleEndian.Uint32(sum)
}
// TODO(jrick) add error correction.
func verifyAndFix(b []byte, chk uint32) error {
if walletHash(b) != chk {
return ErrChecksumMismatch
}
return nil
}
type kdfParameters struct {
mem uint64
nIter uint32
salt [32]byte
}
// computeKdfParameters returns best guess parameters to the
// memory-hard key derivation function to make the computation last
// targetSec seconds, while using no more than maxMem bytes of memory.
func computeKdfParameters(targetSec float64, maxMem uint64) (*kdfParameters, error) {
params := &kdfParameters{}
if _, err := rand.Read(params.salt[:]); err != nil {
return nil, err
}
testKey := []byte("This is an example key to test KDF iteration speed")
memoryReqtBytes := uint64(1024)
approxSec := float64(0)
for approxSec <= targetSec/4 && memoryReqtBytes < maxMem {
memoryReqtBytes *= 2
before := time.Now()
_ = keyOneIter(testKey, params.salt[:], memoryReqtBytes)
approxSec = time.Since(before).Seconds()
}
allItersSec := float64(0)
nIter := uint32(1)
for allItersSec < 0.02 { // This is a magic number straight from armory's source.
nIter *= 2
before := time.Now()
for i := uint32(0); i < nIter; i++ {
_ = keyOneIter(testKey, params.salt[:], memoryReqtBytes)
}
allItersSec = time.Since(before).Seconds()
}
params.mem = memoryReqtBytes
params.nIter = nIter
return params, nil
}
func (params *kdfParameters) WriteTo(w io.Writer) (n int64, err error) {
var written int64
memBytes := make([]byte, 8)
nIterBytes := make([]byte, 4)
binary.LittleEndian.PutUint64(memBytes, params.mem)
binary.LittleEndian.PutUint32(nIterBytes, params.nIter)
chkedBytes := append(memBytes, nIterBytes...)
chkedBytes = append(chkedBytes, params.salt[:]...)
datas := []interface{}{
&params.mem,
&params.nIter,
&params.salt,
walletHash(chkedBytes),
make([]byte, 256-(binary.Size(params)+4)), // padding
}
for _, data := range datas {
if written, err = binaryWrite(w, binary.LittleEndian, data); err != nil {
return n + written, err
}
n += written
}
return n, nil
}
func (params *kdfParameters) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
// These must be read in but are not saved directly to params.
chkedBytes := make([]byte, 44)
var chk uint32
padding := make([]byte, 256-(binary.Size(params)+4))
datas := []interface{}{
chkedBytes,
&chk,
padding,
}
for _, data := range datas {
if read, err = binaryRead(r, binary.LittleEndian, data); err != nil {
return n + read, err
}
n += read
}
// Verify checksum
if err = verifyAndFix(chkedBytes, chk); err != nil {
return n, err
}
// Read params
buf := bytes.NewBuffer(chkedBytes)
datas = []interface{}{
&params.mem,
&params.nIter,
&params.salt,
}
for _, data := range datas {
if err = binary.Read(buf, binary.LittleEndian, data); err != nil {
return n, err
}
}
return n, nil
}
type addrEntry struct {
pubKeyHash160 [ripemd160.Size]byte
addr btcAddress
}
func (e *addrEntry) WriteTo(w io.Writer) (n int64, err error) {
var written int64
// Write header
if written, err = binaryWrite(w, binary.LittleEndian, addrHeader); err != nil {
return n + written, err
}
n += written
// Write hash
if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + written, err
}
n += written
// Write btcAddress
written, err = e.addr.WriteTo(w)
n += written
return n, err
}
func (e *addrEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + read, err
}
n += read
read, err = e.addr.ReadFrom(r)
return n + read, err
}
type addrCommentEntry struct {
pubKeyHash160 [ripemd160.Size]byte
comment []byte
}
func (e *addrCommentEntry) address(net btcwire.BitcoinNet) *btcutil.AddressPubKeyHash {
// error is not returned because the hash will always be 20
// bytes, and net is assumed to be valid.
addr, _ := btcutil.NewAddressPubKeyHash(e.pubKeyHash160[:], net)
return addr
}
func (e *addrCommentEntry) WriteTo(w io.Writer) (n int64, err error) {
var written int64
// Comments shall not overflow their entry.
if len(e.comment) > maxCommentLen {
return n, ErrMalformedEntry
}
// Write header
if written, err = binaryWrite(w, binary.LittleEndian, addrCommentHeader); err != nil {
return n + written, err
}
n += written
// Write hash
if written, err = binaryWrite(w, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + written, err
}
n += written
// Write length
if written, err = binaryWrite(w, binary.LittleEndian, uint16(len(e.comment))); err != nil {
return n + written, err
}
n += written
// Write comment
written, err = binaryWrite(w, binary.LittleEndian, e.comment)
return n + written, err
}
func (e *addrCommentEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
if read, err = binaryRead(r, binary.LittleEndian, &e.pubKeyHash160); err != nil {
return n + read, err
}
n += read
var clen uint16
if read, err = binaryRead(r, binary.LittleEndian, &clen); err != nil {
return n + read, err
}
n += read
e.comment = make([]byte, clen)
read, err = binaryRead(r, binary.LittleEndian, e.comment)
return n + read, err
}
type txCommentEntry struct {
txHash [sha256.Size]byte
comment []byte
}
func (e *txCommentEntry) WriteTo(w io.Writer) (n int64, err error) {
var written int64
// Comments shall not overflow their entry.
if len(e.comment) > maxCommentLen {
return n, ErrMalformedEntry
}
// Write header
if written, err = binaryWrite(w, binary.LittleEndian, txCommentHeader); err != nil {
return n + written, err
}
n += written
// Write length
if written, err = binaryWrite(w, binary.LittleEndian, uint16(len(e.comment))); err != nil {
return n + written, err
}
// Write comment
written, err = binaryWrite(w, binary.LittleEndian, e.comment)
return n + written, err
}
func (e *txCommentEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
if read, err = binaryRead(r, binary.LittleEndian, &e.txHash); err != nil {
return n + read, err
}
n += read
var clen uint16
if read, err = binaryRead(r, binary.LittleEndian, &clen); err != nil {
return n + read, err
}
n += read
e.comment = make([]byte, clen)
read, err = binaryRead(r, binary.LittleEndian, e.comment)
return n + read, err
}
type deletedEntry struct{}
func (e *deletedEntry) ReadFrom(r io.Reader) (n int64, err error) {
var read int64
var ulen uint16
if read, err = binaryRead(r, binary.LittleEndian, &ulen); err != nil {
return n + read, err
}
n += read
unused := make([]byte, ulen)
nRead, err := r.Read(unused)
if err == io.EOF {
return n + int64(nRead), nil
}
return n + int64(nRead), err
}
// BlockStamp defines a block (by height and a unique hash) and is
// used to mark a point in the blockchain that a wallet element is
// synced to.
type BlockStamp struct {
Height int32
Hash btcwire.ShaHash
}