lbry-sdk/tests/dht/testNode.py

463 lines
21 KiB
Python
Raw Normal View History

2015-08-20 11:27:15 -04:00
#!/usr/bin/env python
#
# This library is free software, distributed under the terms of
# the GNU Lesser General Public License Version 3, or any later version.
# See the COPYING file included in this archive
import hashlib
import unittest
import struct
import lbrynet.dht.node
import lbrynet.dht.constants
import lbrynet.dht.datastore
class NodeIDTest(unittest.TestCase):
""" Test case for the Node class's ID """
def setUp(self):
self.node = lbrynet.dht.node.Node()
def testAutoCreatedID(self):
""" Tests if a new node has a valid node ID """
self.failUnlessEqual(type(self.node.id), str, 'Node does not have a valid ID')
self.failUnlessEqual(len(self.node.id), 20, 'Node ID length is incorrect! Expected 160 bits, got %d bits.' % (len(self.node.id)*8))
def testUniqueness(self):
""" Tests the uniqueness of the values created by the NodeID generator
"""
generatedIDs = []
for i in range(100):
newID = self.node._generateID()
# ugly uniqueness test
self.failIf(newID in generatedIDs, 'Generated ID #%d not unique!' % (i+1))
generatedIDs.append(newID)
def testKeyLength(self):
""" Tests the key Node ID key length """
for i in range(20):
id = self.node._generateID()
# Key length: 20 bytes == 160 bits
self.failUnlessEqual(len(id), 20, 'Length of generated ID is incorrect! Expected 160 bits, got %d bits.' % (len(id)*8))
class NodeDataTest(unittest.TestCase):
""" Test case for the Node class's data-related functions """
def setUp(self):
import lbrynet.dht.contact
h = hashlib.sha1()
h.update('test')
self.node = lbrynet.dht.node.Node()
self.contact = lbrynet.dht.contact.Contact(h.digest(), '127.0.0.1', 12345, self.node._protocol)
self.token = self.node.make_token(self.contact.compact_ip())
self.cases = []
for i in xrange(5):
h.update(str(i))
self.cases.append((h.digest(), 5000+2*i))
self.cases.append((h.digest(), 5001+2*i))
#(('a', 'hello there\nthis is a test'),
# ('b', unicode('jasdklfjklsdj;f2352352ljklzsdlkjkasf\ndsjklafsd')),
# ('e', 123),
# ('f', [('this', 'is', 1), {'complex': 'data entry'}]),
# ('aMuchLongerKeyThanAnyOfThePreviousOnes', 'some data'))
def testStore(self):
def check_val_in_result(r, peer_info):
self.failUnless
""" Tests if the node can store (and privately retrieve) some data """
for key, value in self.cases:
self.node.store(key, {'port': value, 'bbid': self.contact.id, 'token': self.token}, self.contact.id, _rpcNodeContact=self.contact)
for key, value in self.cases:
expected_result = self.contact.compact_ip() + str(struct.pack('>H', value)) + self.contact.id
self.failUnless(self.node._dataStore.hasPeersForBlob(key), 'Stored key not found in node\'s DataStore: "%s"' % key)
self.failUnless(expected_result in self.node._dataStore.getPeersForBlob(key), 'Stored val not found in node\'s DataStore: key:"%s" port:"%s" %s' % (key, value, self.node._dataStore.getPeersForBlob(key)))
class NodeContactTest(unittest.TestCase):
""" Test case for the Node class's contact management-related functions """
def setUp(self):
self.node = lbrynet.dht.node.Node()
def testAddContact(self):
""" Tests if a contact can be added and retrieved correctly """
import lbrynet.dht.contact
# Create the contact
h = hashlib.sha1()
h.update('node1')
contactID = h.digest()
contact = lbrynet.dht.contact.Contact(contactID, '127.0.0.1', 91824, self.node._protocol)
# Now add it...
self.node.addContact(contact)
# ...and request the closest nodes to it using FIND_NODE
closestNodes = self.node._routingTable.findCloseNodes(contactID, lbrynet.dht.constants.k)
self.failUnlessEqual(len(closestNodes), 1, 'Wrong amount of contacts returned; expected 1, got %d' % len(closestNodes))
self.failUnless(contact in closestNodes, 'Added contact not found by issueing _findCloseNodes()')
def testAddSelfAsContact(self):
""" Tests the node's behaviour when attempting to add itself as a contact """
import lbrynet.dht.contact
# Create a contact with the same ID as the local node's ID
contact = lbrynet.dht.contact.Contact(self.node.id, '127.0.0.1', 91824, None)
# Now try to add it
self.node.addContact(contact)
# ...and request the closest nodes to it using FIND_NODE
closestNodes = self.node._routingTable.findCloseNodes(self.node.id, lbrynet.dht.constants.k)
self.failIf(contact in closestNodes, 'Node added itself as a contact')
#class NodeLookupTest(unittest.TestCase):
# """ Test case for the Node class's iterative node lookup algorithm """
# def setUp(self):
# import entangled.kademlia.contact
# self.node = entangled.kademlia.node.Node()
# self.remoteNodes = []
# for i in range(10):
# remoteNode = entangled.kademlia.node.Node()
# remoteContact = entangled.kademlia.contact.Contact(remoteNode.id, '127.0.0.1', 91827+i, self.node._protocol)
# self.remoteNodes.append(remoteNode)
# self.node.addContact(remoteContact)
# def testIterativeFindNode(self):
# """ Ugly brute-force test to see if the iterative node lookup algorithm runs without failing """
# import entangled.kademlia.protocol
# entangled.kademlia.protocol.reactor.listenUDP(91826, self.node._protocol)
# for i in range(10):
# entangled.kademlia.protocol.reactor.listenUDP(91827+i, self.remoteNodes[i]._protocol)
# df = self.node.iterativeFindNode(self.node.id)
# df.addBoth(lambda _: entangled.kademlia.protocol.reactor.stop())
# entangled.kademlia.protocol.reactor.run()
""" Some scaffolding for the NodeLookupTest class. Allows isolated node testing by simulating remote node responses"""
from twisted.internet import protocol, defer, selectreactor
from lbrynet.dht.msgtypes import ResponseMessage
class FakeRPCProtocol(protocol.DatagramProtocol):
def __init__(self):
self.reactor = selectreactor.SelectReactor()
self.testResponse = None
self.network = None
def createNetwork(self, contactNetwork):
""" set up a list of contacts together with their closest contacts
@param contactNetwork: a sequence of tuples, each containing a contact together with its closest
contacts: C{(<contact>, <closest contact 1, ...,closest contact n>)}
"""
self.network = contactNetwork
""" Fake RPC protocol; allows entangled.kademlia.contact.Contact objects to "send" RPCs """
def sendRPC(self, contact, method, args, rawResponse=False):
#print method + " " + str(args)
if method == "findNode":
# get the specific contacts closest contacts
closestContacts = []
#print "contact" + contact.id
for contactTuple in self.network:
#print contactTuple[0].id
if contact == contactTuple[0]:
# get the list of closest contacts for this contact
closestContactsList = contactTuple[1]
#print "contact" + contact.id
# Pack the closest contacts into a ResponseMessage
for closeContact in closestContactsList:
#print closeContact.id
closestContacts.append((closeContact.id, closeContact.address, closeContact.port))
message = ResponseMessage("rpcId", contact.id, closestContacts)
df = defer.Deferred()
df.callback((message,(contact.address, contact.port)))
return df
elif method == "findValue":
for contactTuple in self.network:
if contact == contactTuple[0]:
# Get the data stored by this remote contact
dataDict = contactTuple[2]
dataKey = dataDict.keys()[0]
data = dataDict.get(dataKey)
# Check if this contact has the requested value
if dataKey == args[0]:
# Return the data value
response = dataDict
print "data found at contact: " + contact.id
else:
# Return the closest contact to the requested data key
print "data not found at contact: " + contact.id
closeContacts = contactTuple[1]
closestContacts = []
for closeContact in closeContacts:
closestContacts.append((closeContact.id, closeContact.address, closeContact.port))
response = closestContacts
# Create the response message
message = ResponseMessage("rpcId", contact.id, response)
df = defer.Deferred()
df.callback((message,(contact.address, contact.port)))
return df
print "findValue"
def _send(self, data, rpcID, address):
""" fake sending data """
class NodeLookupTest(unittest.TestCase):
""" Test case for the Node class's iterativeFind node lookup algorithm """
def setUp(self):
# create a fake protocol to imitate communication with other nodes
self._protocol = FakeRPCProtocol()
# Note: The reactor is never started for this test. All deferred calls run sequentially,
# since there is no asynchronous network communication
# create the node to be tested in isolation
self.node = lbrynet.dht.node.Node(None, 4000, None, None, self._protocol)
self.updPort = 81173
# create a dummy reactor
#self._protocol.reactor.listenUDP(self.updPort, self._protocol)
self.contactsAmount = 80
# set the node ID manually for testing
self.node.id = '12345678901234567800'
# Reinitialise the routing table
self.node._routingTable = lbrynet.dht.routingtable.OptimizedTreeRoutingTable(self.node.id)
# create 160 bit node ID's for test purposes
self.testNodeIDs = []
#idNum = long(self.node.id.encode('hex'), 16)
idNum = int(self.node.id)
for i in range(self.contactsAmount):
# create the testNodeIDs in ascending order, away from the actual node ID, with regards to the distance metric
self.testNodeIDs.append(idNum + i + 1)
# generate contacts
self.contacts = []
for i in range(self.contactsAmount):
contact = lbrynet.dht.contact.Contact(str(self.testNodeIDs[i]), "127.0.0.1", self.updPort + i + 1, self._protocol)
self.contacts.append(contact)
# create the network of contacts in format: (contact, closest contacts)
contactNetwork = ((self.contacts[0], self.contacts[8:15]),
(self.contacts[1], self.contacts[16:23]),
(self.contacts[2], self.contacts[24:31]),
(self.contacts[3], self.contacts[32:39]),
(self.contacts[4], self.contacts[40:47]),
(self.contacts[5], self.contacts[48:55]),
(self.contacts[6], self.contacts[56:63]),
(self.contacts[7], self.contacts[64:71]),
(self.contacts[8], self.contacts[72:79]),
(self.contacts[40], self.contacts[41:48]),
(self.contacts[41], self.contacts[41:48]),
(self.contacts[42], self.contacts[41:48]),
(self.contacts[43], self.contacts[41:48]),
(self.contacts[44], self.contacts[41:48]),
(self.contacts[45], self.contacts[41:48]),
(self.contacts[46], self.contacts[41:48]),
(self.contacts[47], self.contacts[41:48]),
(self.contacts[48], self.contacts[41:48]),
(self.contacts[50], self.contacts[0:7]),
(self.contacts[51], self.contacts[8:15]),
(self.contacts[52], self.contacts[16:23]))
contacts_with_datastores = []
for contact_tuple in contactNetwork:
contacts_with_datastores.append((contact_tuple[0], contact_tuple[1], lbrynet.dht.datastore.DictDataStore()))
self._protocol.createNetwork(contacts_with_datastores)
def testNodeBootStrap(self):
""" Test bootstrap with the closest possible contacts """
df = self.node._iterativeFind(self.node.id, self.contacts[0:8])
# Set the expected result
expectedResult = []
for item in self.contacts[0:6]:
expectedResult.append(item.id)
#print item.id
# Get the result from the deferred
activeContacts = df.result
# Check the length of the active contacts
self.failUnlessEqual(activeContacts.__len__(), expectedResult.__len__(), \
"More active contacts should exist, there should be %d contacts" %expectedResult.__len__())
# Check that the received active contacts are the same as the input contacts
self.failUnlessEqual(activeContacts, expectedResult, \
"Active should only contain the closest possible contacts which were used as input for the boostrap")
# def testFindingCloserNodes(self):
# """ Test discovery of closer contacts"""
#
# # Use input contacts that have knowledge of closer contacts,
# df = self.node._iterativeFind(self.node.id, self.contacts[50:53])
# #set the expected result
# expectedResult = []
# #print "############ Expected Active contacts #################"
# for item in self.contacts[0:9]:
# expectedResult.append(item.id)
# #print item.id
# #print "#######################################################"
#
# # Get the result from the deferred
# activeContacts = df.result
#
# #print "!!!!!!!!!!! Receieved Active contacts !!!!!!!!!!!!!!!"
# #for item in activeContacts:
# # print item.id
# #print "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
#
# # Check the length of the active contacts
# self.failUnlessEqual(activeContacts.__len__(), expectedResult.__len__(), \
# "Length of received active contacts not as expected, should be %d" %expectedResult.__len__())
#
#
# # Check that the received active contacts are now closer to this node
# self.failUnlessEqual(activeContacts, expectedResult, \
# "Active contacts should now only contain the closest possible contacts")
# def testIterativeStore(self):
# """ test storing values """
#
# # create the network of contacts in format: (contact, closest contacts)
# contactNetwork = ((self.contacts[0], self.contacts[0:8]),
# (self.contacts[1], self.contacts[0:8]),
# (self.contacts[2], self.contacts[0:8]),
# (self.contacts[3], self.contacts[0:8]),
# (self.contacts[4], self.contacts[0:8]),
# (self.contacts[5], self.contacts[0:8]),
# (self.contacts[6], self.contacts[0:8]),
# (self.contacts[7], self.contacts[0:8]),
# (self.contacts[8], self.contacts[0:8]),
# (self.contacts[40], self.contacts[41:48]),
# (self.contacts[41], self.contacts[41:48]),
# (self.contacts[42], self.contacts[41:48]),
# (self.contacts[43], self.contacts[41:48]),
# (self.contacts[44], self.contacts[41:48]),
# (self.contacts[45], self.contacts[41:48]),
# (self.contacts[46], self.contacts[41:48]),
# (self.contacts[47], self.contacts[41:48]),
# (self.contacts[48], self.contacts[41:48]))
# contacts_with_datastores = []
#
# for contact_tuple in contactNetwork:
# contacts_with_datastores.append((contact_tuple[0], contact_tuple[1], lbrynet.dht.datastore.DictDataStore()))
#
# self._protocol.createNetwork(contacts_with_datastores)
#
#
# #self._protocol.createNetwork(contactNetwork)
#
#
# # Test storing a value that has an hash id close to the known contacts
# # The value should only be stored at those nodes
# value = 'value'
# valueID = self.contacts[40].id
#
# # Manually populate the routing table with contacts that have ID's close to the valueID
# for contact in self.contacts[40:48]:
# self.node.addContact(contact)
#
# # Manually populate the routing table with contacts that have ID's far away from the valueID
# for contact in self.contacts[0:8]:
# self.node.addContact(contact)
#
# # Store the value
# df = self.node.announceHaveBlob(valueID, value)
#
# storageNodes = df.result
#
# storageNodeIDs = []
# for item in storageNodes:
# storageNodeIDs.append(item.id)
# storageNodeIDs.sort()
# #print storageNodeIDs
#
# expectedIDs = []
# for item in self.contacts[40:43]:
# expectedIDs.append(item.id)
# #print expectedIDs
#
# #print '#### storage nodes ####'
# #for node in storageNodes:
# # print node.id
#
#
# # check that the value has been stored at nodes with ID's close to the valueID
# self.failUnlessEqual(storageNodeIDs, expectedIDs, \
# "Value not stored at nodes with ID's close to the valueID")
#
# def testFindValue(self):
# # create test values using the contact ID as the key
# testValues = ({self.contacts[0].id: "some test data"},
# {self.contacts[1].id: "some more test data"},
# {self.contacts[8].id: "and more data"}
# )
#
#
# # create the network of contacts in format: (contact, closest contacts, values)
# contactNetwork = ((self.contacts[0], self.contacts[0:6], testValues[0]),
# (self.contacts[1], self.contacts[0:6], testValues[1]),
# (self.contacts[2], self.contacts[0:6], {'2':'2'}),
# (self.contacts[3], self.contacts[0:6], {'4':'5'}),
# (self.contacts[4], self.contacts[0:6], testValues[2]),
# (self.contacts[5], self.contacts[0:6], {'2':'2'}),
# (self.contacts[6], self.contacts[0:6], {'2':'2'}))
#
# self._protocol.createNetwork(contactNetwork)
#
# # Initialise the routing table with some contacts
# for contact in self.contacts[0:4]:
# self.node.addContact(contact)
#
# # Initialise the node with some known contacts
# #self.node._iterativeFind(self.node.id, self.contacts[0:3])
#
# df = self.node.iterativeFindValue(testValues[1].keys()[0])
#
# resultDict = df.result
# keys = resultDict.keys()
#
# for key in keys:
# if key == 'closestNodeNoValue':
# print "closest contact without data " + " " + resultDict.get(key).id
# else:
# print "data key :" + key + "; " + "data: " + resultDict.get(key)
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.makeSuite(NodeIDTest))
suite.addTest(unittest.makeSuite(NodeDataTest))
suite.addTest(unittest.makeSuite(NodeContactTest))
suite.addTest(unittest.makeSuite(NodeLookupTest))
return suite
if __name__ == '__main__':
# If this module is executed from the commandline, run all its tests
unittest.TextTestRunner().run(suite())