Refactor dht.node.iterativeFind

Move nested functions into a helper class.
Add new, smaller functions to increase readability
This commit is contained in:
Job Evers-Meltzer 2016-12-13 18:11:04 -06:00
parent fa8190356a
commit 740fad5cbe

View file

@ -34,6 +34,7 @@ def rpcmethod(func):
func.rpcmethod = True func.rpcmethod = True
return func return func
class Node(object): class Node(object):
""" Local node in the Kademlia network """ Local node in the Kademlia network
@ -591,176 +592,11 @@ class Node(object):
# This is used during the bootstrap process; node ID's are most probably fake # This is used during the bootstrap process; node ID's are most probably fake
shortlist = startupShortlist shortlist = startupShortlist
# List of active queries; len() indicates number of active probes
#
# n.b: using lists for these variables, because Python doesn't
# allow binding a new value to a name in an enclosing
# (non-global) scope
activeProbes = []
# List of contact IDs that have already been queried
alreadyContacted = []
# Probes that were active during the previous iteration
# A list of found and known-to-be-active remote nodes
activeContacts = []
# This should only contain one entry; the next scheduled iteration call
pendingIterationCalls = []
prevClosestNode = [None]
findValueResult = {}
slowNodeCount = [0]
def extendShortlist(responseTuple):
""" @type responseMsg: kademlia.msgtypes.ResponseMessage """
# The "raw response" tuple contains the response message,
# and the originating address info
responseMsg = responseTuple[0]
originAddress = responseTuple[1] # tuple: (ip adress, udp port)
# Make sure the responding node is valid, and abort the operation if it isn't
if responseMsg.nodeID in activeContacts or responseMsg.nodeID == self.id:
return responseMsg.nodeID
# Mark this node as active
if responseMsg.nodeID in shortlist:
# Get the contact information from the shortlist...
aContact = shortlist[shortlist.index(responseMsg.nodeID)]
else:
# If it's not in the shortlist; we probably used a fake ID to reach it
# - reconstruct the contact, using the real node ID this time
aContact = Contact(
responseMsg.nodeID, originAddress[0], originAddress[1], self._protocol)
activeContacts.append(aContact)
# This makes sure "bootstrap"-nodes with "fake" IDs don't get queried twice
if responseMsg.nodeID not in alreadyContacted:
alreadyContacted.append(responseMsg.nodeID)
# Now grow extend the (unverified) shortlist with the returned contacts
result = responseMsg.response
#TODO: some validation on the result (for guarding against attacks)
# If we are looking for a value, first see if this result is the value
# we are looking for before treating it as a list of contact triples
if findValue is True and key in result and not 'contacts' in result:
# We have found the value
findValueResult[key] = result[key]
findValueResult['from_peer'] = aContact.address
else:
if findValue is True:
# We are looking for a value, and the remote node didn't have it
# - mark it as the closest "empty" node, if it is
if 'closestNodeNoValue' in findValueResult:
is_closer = (
self._routingTable.distance(key, responseMsg.nodeID) <
self._routingTable.distance(key, activeContacts[0].id))
if is_closer:
findValueResult['closestNodeNoValue'] = aContact
else:
findValueResult['closestNodeNoValue'] = aContact
contactTriples = result['contacts']
else:
contactTriples = result
for contactTriple in contactTriples:
if isinstance(contactTriple, (list, tuple)) and len(contactTriple) == 3:
testContact = Contact(
contactTriple[0], contactTriple[1], contactTriple[2], self._protocol)
if testContact not in shortlist:
shortlist.append(testContact)
return responseMsg.nodeID
def removeFromShortlist(failure):
""" @type failure: twisted.python.failure.Failure """
failure.trap(protocol.TimeoutError)
deadContactID = failure.getErrorMessage()
if deadContactID in shortlist:
shortlist.remove(deadContactID)
return deadContactID
def cancelActiveProbe(contactID):
activeProbes.pop()
if len(activeProbes) <= constants.alpha/2 and len(pendingIterationCalls):
# Force the iteration
pendingIterationCalls[0].cancel()
del pendingIterationCalls[0]
searchIteration()
def log_error(err):
log.error(err.getErrorMessage())
# Send parallel, asynchronous FIND_NODE RPCs to the shortlist of contacts
def searchIteration():
slowNodeCount[0] = len(activeProbes)
# TODO: move sort_key to be a method on the class
def sort_key(firstContact, secondContact, targetKey=key):
return cmp(
self._routingTable.distance(firstContact.id, targetKey),
self._routingTable.distance(secondContact.id, targetKey)
)
# Sort the discovered active nodes from closest to furthest
activeContacts.sort(sort_key)
# This makes sure a returning probe doesn't force calling this function by mistake
while len(pendingIterationCalls):
del pendingIterationCalls[0]
# See if should continue the search
if key in findValueResult:
outerDf.callback(findValueResult)
return
elif len(activeContacts) and findValue == False:
is_all_done = (
len(activeContacts) >= constants.k or
(
activeContacts[0] == prevClosestNode[0] and
len(activeProbes) == slowNodeCount[0]
)
)
if is_all_done:
# TODO: Re-send the FIND_NODEs to all of the k closest nodes not already queried
#
# Ok, we're done; either we have accumulated k
# active contacts or no improvement in closestNode
# has been noted
outerDf.callback(activeContacts)
return
# The search continues...
if len(activeContacts):
prevClosestNode[0] = activeContacts[0]
contactedNow = 0
shortlist.sort(sort_key)
# Store the current shortList length before contacting other nodes
prevShortlistLength = len(shortlist)
for contact in shortlist:
if contact.id not in alreadyContacted:
activeProbes.append(contact.id)
rpcMethod = getattr(contact, rpc)
df = rpcMethod(key, rawResponse=True)
df.addCallback(extendShortlist)
df.addErrback(removeFromShortlist)
df.addCallback(cancelActiveProbe)
df.addErrback(log_error)
alreadyContacted.append(contact.id)
contactedNow += 1
if contactedNow == constants.alpha:
break
should_lookup_active_calls = (
len(activeProbes) > slowNodeCount[0] or
(
len(shortlist) < constants.k and
len(activeContacts) < len(shortlist) and
len(activeProbes) > 0
)
)
if should_lookup_active_calls:
# Schedule the next iteration if there are any active
# calls (Kademlia uses loose parallelism)
call = twisted.internet.reactor.callLater(
constants.iterativeLookupDelay, searchIteration) #IGNORE:E1101
pendingIterationCalls.append(call)
# Check for a quick contact response that made an update to the shortList
elif prevShortlistLength < len(shortlist):
# Ensure that the closest contacts are taken from the updated shortList
searchIteration()
else:
# If no probes were sent, there will not be any improvement, so we're done
outerDf.callback(activeContacts)
outerDf = defer.Deferred() outerDf = defer.Deferred()
helper = _IterativeFindHelper(self, outerDf, shortlist, key, findValue, rpc)
# Start the iterations # Start the iterations
searchIteration() helper.searchIteration()
return outerDf return outerDf
def _refreshNode(self): def _refreshNode(self):
@ -796,6 +632,212 @@ class Node(object):
return df return df
# This was originally a set of nested methods in _iterativeFind
# but they have been moved into this helper class in-order to
# have better scoping and readability
class _IterativeFindHelper(object):
# TODO: use polymorphism to search for a value or node
# instead of using a find_value flag
def __init__(self, node, outer_d, shortlist, key, find_value, rpc):
self.node = node
self.outer_d = outer_d
self.shortlist = shortlist
self.key = key
self.find_value = find_value
self.rpc = rpc
# List of active queries; len() indicates number of active probes
#
# n.b: using lists for these variables, because Python doesn't
# allow binding a new value to a name in an enclosing
# (non-global) scope
self.active_probes = []
# List of contact IDs that have already been queried
self.already_contacted = []
# Probes that were active during the previous iteration
# A list of found and known-to-be-active remote nodes
self.active_contacts = []
# This should only contain one entry; the next scheduled iteration call
self.pending_iteration_calls = []
self.prev_closest_node = [None]
self.find_value_result = {}
self.slow_node_count = [0]
def extendShortlist(self, responseTuple):
""" @type responseMsg: kademlia.msgtypes.ResponseMessage """
# The "raw response" tuple contains the response message,
# and the originating address info
responseMsg = responseTuple[0]
originAddress = responseTuple[1] # tuple: (ip adress, udp port)
# Make sure the responding node is valid, and abort the operation if it isn't
if responseMsg.nodeID in self.active_contacts or responseMsg.nodeID == self.node.id:
return responseMsg.nodeID
# Mark this node as active
aContact = self._getActiveContact(responseMsg, originAddress)
self.active_contacts.append(aContact)
# This makes sure "bootstrap"-nodes with "fake" IDs don't get queried twice
if responseMsg.nodeID not in self.already_contacted:
self.already_contacted.append(responseMsg.nodeID)
# Now grow extend the (unverified) shortlist with the returned contacts
result = responseMsg.response
#TODO: some validation on the result (for guarding against attacks)
# If we are looking for a value, first see if this result is the value
# we are looking for before treating it as a list of contact triples
if self.find_value is True and self.key in result and not 'contacts' in result:
# We have found the value
self.find_value_result[self.key] = result[self.key]
self.find_value_result['from_peer'] = aContact.address
else:
if self.find_value is True:
self._setClosestNodeValue(responseMsg, aContact)
self._keepSearching(result)
return responseMsg.nodeID
def _getActiveContact(self, responseMsg, originAddress):
if responseMsg.nodeID in self.shortlist:
# Get the contact information from the shortlist...
return self.shortlist[self.shortlist.index(responseMsg.nodeID)]
else:
# If it's not in the shortlist; we probably used a fake ID to reach it
# - reconstruct the contact, using the real node ID this time
return Contact(
responseMsg.nodeID, originAddress[0], originAddress[1], self.node._protocol)
def _keepSearching(self, result):
contactTriples = self._getContactTriples(result)
for contactTriple in contactTriples:
self._addIfValid(contactTriple)
def _getContactTriples(self, result):
if self.find_value is True:
return result['contacts']
else:
return result
def _setClosestNodeValue(self, responseMsg, aContact):
# We are looking for a value, and the remote node didn't have it
# - mark it as the closest "empty" node, if it is
if 'closestNodeNoValue' in self.find_value_result:
if self._is_closer(responseMsg):
self.find_value_result['closestNodeNoValue'] = aContact
else:
self.find_value_result['closestNodeNoValue'] = aContact
def _is_closer(self, responseMsg):
return (
self.node._routingTable.distance(self.key, responseMsg.nodeID) <
self.node._routingTable.distance(self.key, self.active_contacts[0].id)
)
def _addIfValid(self, contactTriple):
if isinstance(contactTriple, (list, tuple)) and len(contactTriple) == 3:
testContact = Contact(
contactTriple[0], contactTriple[1], contactTriple[2], self.node._protocol)
if testContact not in self.shortlist:
self.shortlist.append(testContact)
def removeFromShortlist(self, failure):
""" @type failure: twisted.python.failure.Failure """
failure.trap(protocol.TimeoutError)
deadContactID = failure.getErrorMessage()
if deadContactID in self.shortlist:
self.shortlist.remove(deadContactID)
return deadContactID
def cancelActiveProbe(self, contactID):
self.active_probes.pop()
if len(self.active_probes) <= constants.alpha/2 and len(self.pending_iteration_calls):
# Force the iteration
self.pending_iteration_calls[0].cancel()
del self.pending_iteration_calls[0]
self.searchIteration()
# Send parallel, asynchronous FIND_NODE RPCs to the shortlist of contacts
def searchIteration(self):
self.slow_node_count[0] = len(self.active_probes)
# TODO: move sort_key to be a method on the class
def sort_key(firstContact, secondContact, targetKey=self.key):
return cmp(
self.node._routingTable.distance(firstContact.id, targetKey),
self.node._routingTable.distance(secondContact.id, targetKey)
)
# Sort the discovered active nodes from closest to furthest
self.active_contacts.sort(sort_key)
# This makes sure a returning probe doesn't force calling this function by mistake
while len(self.pending_iteration_calls):
del self.pending_iteration_calls[0]
# See if should continue the search
if self.key in self.find_value_result:
self.outer_d.callback(self.find_value_result)
return
elif len(self.active_contacts) and self.find_value == False:
if self._is_all_done():
# TODO: Re-send the FIND_NODEs to all of the k closest nodes not already queried
#
# Ok, we're done; either we have accumulated k active
# contacts or no improvement in closestNode has been
# noted
self.outer_d.callback(self.active_contacts)
return
# The search continues...
if len(self.active_contacts):
self.prev_closest_node[0] = self.active_contacts[0]
contactedNow = 0
self.shortlist.sort(sort_key)
# Store the current shortList length before contacting other nodes
prevShortlistLength = len(self.shortlist)
for contact in self.shortlist:
if contact.id not in self.already_contacted:
self._probeContact(contact)
contactedNow += 1
if contactedNow == constants.alpha:
break
if self._should_lookup_active_calls():
# Schedule the next iteration if there are any active
# calls (Kademlia uses loose parallelism)
call = twisted.internet.reactor.callLater(
constants.iterativeLookupDelay, self.searchIteration) #IGNORE:E1101
self.pending_iteration_calls.append(call)
# Check for a quick contact response that made an update to the shortList
elif prevShortlistLength < len(self.shortlist):
# Ensure that the closest contacts are taken from the updated shortList
self.searchIteration()
else:
# If no probes were sent, there will not be any improvement, so we're done
self.outer_d.callback(self.active_contacts)
def _probeContact(self, contact):
self.active_probes.append(contact.id)
rpcMethod = getattr(contact, self.rpc)
df = rpcMethod(self.key, rawResponse=True)
df.addCallback(self.extendShortlist)
df.addErrback(self.removeFromShortlist)
df.addCallback(self.cancelActiveProbe)
df.addErrback(log.fail(), 'Failed to contact %s', contact)
self.already_contacted.append(contact.id)
def _should_lookup_active_calls(self):
return (
len(self.active_probes) > self.slow_node_count[0] or
(
len(self.shortlist) < constants.k and
len(self.active_contacts) < len(self.shortlist) and
len(self.active_probes) > 0
)
)
def _is_all_done(self):
return (
len(self.active_contacts) >= constants.k or
(
self.active_contacts[0] == self.prev_closest_node[0] and
len(self.active_probes) == self.slow_node_count[0]
)
)
def main(): def main():
parser = argparse.ArgumentParser(description="Launch a dht node") parser = argparse.ArgumentParser(description="Launch a dht node")
parser.add_argument("udp_port", help="The UDP port on which the node will listen", parser.add_argument("udp_port", help="The UDP port on which the node will listen",