lbry-sdk/lbrynet/dht/routingtable.py

346 lines
15 KiB
Python

# This library is free software, distributed under the terms of
# the GNU Lesser General Public License Version 3, or any later version.
# See the COPYING file included in this archive
#
# The docstrings in this module contain epytext markup; API documentation
# may be created by processing this file with epydoc: http://epydoc.sf.net
import time
import random
from zope.interface import implements
import constants
import kbucket
from interface import IRoutingTable
from error import TimeoutError
import logging
log = logging.getLogger(__name__)
class TreeRoutingTable(object):
""" This class implements a routing table used by a Node class.
The Kademlia routing table is a binary tree whose leaves are k-buckets,
where each k-bucket contains nodes with some common prefix of their IDs.
This prefix is the k-bucket's position in the binary tree; it therefore
covers some range of ID values, and together all of the k-buckets cover
the entire n-bit ID (or key) space (with no overlap).
@note: In this implementation, nodes in the tree (the k-buckets) are
added dynamically, as needed; this technique is described in the 13-page
version of the Kademlia paper, in section 2.4. It does, however, use the
C{PING} RPC-based k-bucket eviction algorithm described in section 2.2 of
that paper.
"""
implements(IRoutingTable)
def __init__(self, parentNodeID):
"""
@param parentNodeID: The n-bit node ID of the node to which this
routing table belongs
@type parentNodeID: str
"""
# Create the initial (single) k-bucket covering the range of the entire n-bit ID space
self._buckets = [kbucket.KBucket(rangeMin=0, rangeMax=2 ** constants.key_bits)]
self._parentNodeID = parentNodeID
def addContact(self, contact):
""" Add the given contact to the correct k-bucket; if it already
exists, its status will be updated
@param contact: The contact to add to this node's k-buckets
@type contact: kademlia.contact.Contact
"""
if contact.id == self._parentNodeID:
return
bucketIndex = self._kbucketIndex(contact.id)
try:
self._buckets[bucketIndex].addContact(contact)
except kbucket.BucketFull:
# The bucket is full; see if it can be split (by checking
# if its range includes the host node's id)
if self._buckets[bucketIndex].keyInRange(self._parentNodeID):
self._splitBucket(bucketIndex)
# Retry the insertion attempt
self.addContact(contact)
else:
# We can't split the k-bucket
# NOTE:
# In section 2.4 of the 13-page version of the
# Kademlia paper, it is specified that in this case,
# the new contact should simply be dropped. However,
# in section 2.2, it states that the head contact in
# the k-bucket (i.e. the least-recently seen node)
# should be pinged - if it does not reply, it should
# be dropped, and the new contact added to the tail of
# the k-bucket. This implementation follows section
# 2.2 regarding this point.
def replaceContact(failure):
""" Callback for the deferred PING RPC to see if the head
node in the k-bucket is still responding
@type failure: twisted.python.failure.Failure
"""
failure.trap(TimeoutError)
print '==replacing contact=='
# Remove the old contact...
deadContactID = failure.getErrorMessage()
try:
self._buckets[bucketIndex].removeContact(deadContactID)
except ValueError:
# The contact has already been removed (probably due to a timeout)
pass
# ...and add the new one at the tail of the bucket
self.addContact(contact)
# Ping the least-recently seen contact in this k-bucket
head_contact = self._buckets[bucketIndex]._contacts[0]
df = head_contact.ping()
# If there's an error (i.e. timeout), remove the head
# contact, and append the new one
df.addErrback(replaceContact)
def findCloseNodes(self, key, count, _rpcNodeID=None):
""" Finds a number of known nodes closest to the node/value with the
specified key.
@param key: the n-bit key (i.e. the node or value ID) to search for
@type key: str
@param count: the amount of contacts to return
@type count: int
@param _rpcNodeID: Used during RPC, this is be the sender's Node ID
Whatever ID is passed in the paramater will get
excluded from the list of returned contacts.
@type _rpcNodeID: str
@return: A list of node contacts (C{kademlia.contact.Contact instances})
closest to the specified key.
This method will return C{k} (or C{count}, if specified)
contacts if at all possible; it will only return fewer if the
node is returning all of the contacts that it knows of.
@rtype: list
"""
bucketIndex = self._kbucketIndex(key)
closestNodes = self._buckets[bucketIndex].getContacts(constants.k, _rpcNodeID)
# This method must return k contacts (even if we have the node
# with the specified key as node ID), unless there is less
# than k remote nodes in the routing table
i = 1
canGoLower = bucketIndex - i >= 0
canGoHigher = bucketIndex + i < len(self._buckets)
# Fill up the node list to k nodes, starting with the closest neighbouring nodes known
while len(closestNodes) < constants.k and (canGoLower or canGoHigher):
# TODO: this may need to be optimized
if canGoLower:
closestNodes.extend(
self._buckets[bucketIndex - i].getContacts(
constants.k - len(closestNodes), _rpcNodeID))
canGoLower = bucketIndex - (i + 1) >= 0
if canGoHigher:
closestNodes.extend(
self._buckets[bucketIndex + i].getContacts(
constants.k - len(closestNodes), _rpcNodeID))
canGoHigher = bucketIndex + (i + 1) < len(self._buckets)
i += 1
return closestNodes
def getContact(self, contactID):
""" Returns the (known) contact with the specified node ID
@raise ValueError: No contact with the specified contact ID is known
by this node
"""
bucketIndex = self._kbucketIndex(contactID)
try:
contact = self._buckets[bucketIndex].getContact(contactID)
except ValueError:
raise
else:
return contact
def getRefreshList(self, startIndex=0, force=False):
""" Finds all k-buckets that need refreshing, starting at the
k-bucket with the specified index, and returns IDs to be searched for
in order to refresh those k-buckets
@param startIndex: The index of the bucket to start refreshing at;
this bucket and those further away from it will
be refreshed. For example, when joining the
network, this node will set this to the index of
the bucket after the one containing it's closest
neighbour.
@type startIndex: index
@param force: If this is C{True}, all buckets (in the specified range)
will be refreshed, regardless of the time they were last
accessed.
@type force: bool
@return: A list of node ID's that the parent node should search for
in order to refresh the routing Table
@rtype: list
"""
bucketIndex = startIndex
refreshIDs = []
for bucket in self._buckets[startIndex:]:
if force or (int(time.time()) - bucket.lastAccessed >= constants.refreshTimeout):
searchID = self._randomIDInBucketRange(bucketIndex)
refreshIDs.append(searchID)
bucketIndex += 1
return refreshIDs
def removeContact(self, contactID):
""" Remove the contact with the specified node ID from the routing
table
@param contactID: The node ID of the contact to remove
@type contactID: str
"""
bucketIndex = self._kbucketIndex(contactID)
try:
self._buckets[bucketIndex].removeContact(contactID)
except ValueError:
return
def touchKBucket(self, key):
""" Update the "last accessed" timestamp of the k-bucket which covers
the range containing the specified key in the key/ID space
@param key: A key in the range of the target k-bucket
@type key: str
"""
bucketIndex = self._kbucketIndex(key)
self._buckets[bucketIndex].lastAccessed = int(time.time())
def _kbucketIndex(self, key):
""" Calculate the index of the k-bucket which is responsible for the
specified key (or ID)
@param key: The key for which to find the appropriate k-bucket index
@type key: str
@return: The index of the k-bucket responsible for the specified key
@rtype: int
"""
i = 0
for bucket in self._buckets:
if bucket.keyInRange(key):
return i
else:
i += 1
return i
def _randomIDInBucketRange(self, bucketIndex):
""" Returns a random ID in the specified k-bucket's range
@param bucketIndex: The index of the k-bucket to use
@type bucketIndex: int
"""
idValue = random.randrange(
self._buckets[bucketIndex].rangeMin, self._buckets[bucketIndex].rangeMax)
randomID = hex(idValue)[2:]
if randomID[-1] == 'L':
randomID = randomID[:-1]
if len(randomID) % 2 != 0:
randomID = '0' + randomID
randomID = randomID.decode('hex')
randomID = (constants.key_bits / 8 - len(randomID)) * '\x00' + randomID
return randomID
def _splitBucket(self, oldBucketIndex):
""" Splits the specified k-bucket into two new buckets which together
cover the same range in the key/ID space
@param oldBucketIndex: The index of k-bucket to split (in this table's
list of k-buckets)
@type oldBucketIndex: int
"""
# Resize the range of the current (old) k-bucket
oldBucket = self._buckets[oldBucketIndex]
splitPoint = oldBucket.rangeMax - (oldBucket.rangeMax - oldBucket.rangeMin) / 2
# Create a new k-bucket to cover the range split off from the old bucket
newBucket = kbucket.KBucket(splitPoint, oldBucket.rangeMax)
oldBucket.rangeMax = splitPoint
# Now, add the new bucket into the routing table tree
self._buckets.insert(oldBucketIndex + 1, newBucket)
# Finally, copy all nodes that belong to the new k-bucket into it...
for contact in oldBucket._contacts:
if newBucket.keyInRange(contact.id):
newBucket.addContact(contact)
# ...and remove them from the old bucket
for contact in newBucket._contacts:
oldBucket.removeContact(contact)
class OptimizedTreeRoutingTable(TreeRoutingTable):
""" A version of the "tree"-type routing table specified by Kademlia,
along with contact accounting optimizations specified in section 4.1 of
of the 13-page version of the Kademlia paper.
"""
def __init__(self, parentNodeID):
TreeRoutingTable.__init__(self, parentNodeID)
# Cache containing nodes eligible to replace stale k-bucket entries
self._replacementCache = {}
def addContact(self, contact):
""" Add the given contact to the correct k-bucket; if it already
exists, its status will be updated
@param contact: The contact to add to this node's k-buckets
@type contact: kademlia.contact.Contact
"""
if contact.id == self._parentNodeID:
return
# Initialize/reset the "successively failed RPC" counter
contact.failedRPCs = 0
bucketIndex = self._kbucketIndex(contact.id)
try:
self._buckets[bucketIndex].addContact(contact)
except kbucket.BucketFull:
# The bucket is full; see if it can be split (by checking
# if its range includes the host node's id)
if self._buckets[bucketIndex].keyInRange(self._parentNodeID):
self._splitBucket(bucketIndex)
# Retry the insertion attempt
self.addContact(contact)
else:
# We can't split the k-bucket
# NOTE: This implementation follows section 4.1 of the 13 page version
# of the Kademlia paper (optimized contact accounting without PINGs
# - results in much less network traffic, at the expense of some memory)
# Put the new contact in our replacement cache for the
# corresponding k-bucket (or update it's position if
# it exists already)
if bucketIndex not in self._replacementCache:
self._replacementCache[bucketIndex] = []
if contact in self._replacementCache[bucketIndex]:
self._replacementCache[bucketIndex].remove(contact)
elif len(self._replacementCache[bucketIndex]) >= constants.replacementCacheSize:
self._replacementCache[bucketIndex].pop(0)
self._replacementCache[bucketIndex].append(contact)
def removeContact(self, contactID):
""" Remove the contact with the specified node ID from the routing
table
@param contactID: The node ID of the contact to remove
@type contactID: str
"""
bucketIndex = self._kbucketIndex(contactID)
try:
contact = self._buckets[bucketIndex].getContact(contactID)
except ValueError:
return
contact.failedRPCs += 1
if contact.failedRPCs >= constants.rpcAttempts:
self._buckets[bucketIndex].removeContact(contactID)
# Replace this stale contact with one from our replacement cache, if we have any
if bucketIndex in self._replacementCache:
if len(self._replacementCache[bucketIndex]) > 0:
self._buckets[bucketIndex].addContact(
self._replacementCache[bucketIndex].pop())