2018-07-27 00:36:45 +02:00
// Copyright (c) 2017-2018 The Bitcoin Core developers
2018-03-05 22:29:37 +01:00
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
# include <wallet/coinselection.h>
# include <util.h>
# include <utilmoneystr.h>
// Descending order comparator
struct {
2018-07-19 04:45:26 +02:00
bool operator ( ) ( const OutputGroup & a , const OutputGroup & b ) const
2018-03-05 22:29:37 +01:00
{
return a . effective_value > b . effective_value ;
}
} descending ;
/*
* This is the Branch and Bound Coin Selection algorithm designed by Murch . It searches for an input
* set that can pay for the spending target and does not exceed the spending target by more than the
* cost of creating and spending a change output . The algorithm uses a depth - first search on a binary
* tree . In the binary tree , each node corresponds to the inclusion or the omission of a UTXO . UTXOs
* are sorted by their effective values and the trees is explored deterministically per the inclusion
* branch first . At each node , the algorithm checks whether the selection is within the target range .
* While the selection has not reached the target range , more UTXOs are included . When a selection ' s
* value exceeds the target range , the complete subtree deriving from this selection can be omitted .
* At that point , the last included UTXO is deselected and the corresponding omission branch explored
* instead . The search ends after the complete tree has been searched or after a limited number of tries .
*
* The search continues to search for better solutions after one solution has been found . The best
* solution is chosen by minimizing the waste metric . The waste metric is defined as the cost to
* spend the current inputs at the given fee rate minus the long term expected cost to spend the
* inputs , plus the amount the selection exceeds the spending target :
*
* waste = selectionTotal - target + inputs × ( currentFeeRate - longTermFeeRate )
*
* The algorithm uses two additional optimizations . A lookahead keeps track of the total value of
* the unexplored UTXOs . A subtree is not explored if the lookahead indicates that the target range
* cannot be reached . Further , it is unnecessary to test equivalent combinations . This allows us
* to skip testing the inclusion of UTXOs that match the effective value and waste of an omitted
* predecessor .
*
* The Branch and Bound algorithm is described in detail in Murch ' s Master Thesis :
* https : //murch.one/wp-content/uploads/2016/11/erhardt2016coinselection.pdf
*
* @ param const std : : vector < CInputCoin > & utxo_pool The set of UTXOs that we are choosing from .
* These UTXOs will be sorted in descending order by effective value and the CInputCoins '
* values are their effective values .
* @ param const CAmount & target_value This is the value that we want to select . It is the lower
* bound of the range .
* @ param const CAmount & cost_of_change This is the cost of creating and spending a change output .
* This plus target_value is the upper bound of the range .
* @ param std : : set < CInputCoin > & out_set - > This is an output parameter for the set of CInputCoins
* that have been selected .
* @ param CAmount & value_ret - > This is an output parameter for the total value of the CInputCoins
* that were selected .
* @ param CAmount not_input_fees - > The fees that need to be paid for the outputs and fixed size
* overhead ( version , locktime , marker and flag )
*/
static const size_t TOTAL_TRIES = 100000 ;
2018-07-19 04:45:26 +02:00
bool SelectCoinsBnB ( std : : vector < OutputGroup > & utxo_pool , const CAmount & target_value , const CAmount & cost_of_change , std : : set < CInputCoin > & out_set , CAmount & value_ret , CAmount not_input_fees )
2018-03-05 22:29:37 +01:00
{
out_set . clear ( ) ;
CAmount curr_value = 0 ;
std : : vector < bool > curr_selection ; // select the utxo at this index
curr_selection . reserve ( utxo_pool . size ( ) ) ;
CAmount actual_target = not_input_fees + target_value ;
// Calculate curr_available_value
CAmount curr_available_value = 0 ;
2018-07-19 04:45:26 +02:00
for ( const OutputGroup & utxo : utxo_pool ) {
2018-03-05 22:29:37 +01:00
// Assert that this utxo is not negative. It should never be negative, effective value calculation should have removed it
assert ( utxo . effective_value > 0 ) ;
curr_available_value + = utxo . effective_value ;
}
if ( curr_available_value < actual_target ) {
return false ;
}
// Sort the utxo_pool
std : : sort ( utxo_pool . begin ( ) , utxo_pool . end ( ) , descending ) ;
CAmount curr_waste = 0 ;
std : : vector < bool > best_selection ;
CAmount best_waste = MAX_MONEY ;
// Depth First search loop for choosing the UTXOs
for ( size_t i = 0 ; i < TOTAL_TRIES ; + + i ) {
// Conditions for starting a backtrack
bool backtrack = false ;
if ( curr_value + curr_available_value < actual_target | | // Cannot possibly reach target with the amount remaining in the curr_available_value.
curr_value > actual_target + cost_of_change | | // Selected value is out of range, go back and try other branch
( curr_waste > best_waste & & ( utxo_pool . at ( 0 ) . fee - utxo_pool . at ( 0 ) . long_term_fee ) > 0 ) ) { // Don't select things which we know will be more wasteful if the waste is increasing
backtrack = true ;
} else if ( curr_value > = actual_target ) { // Selected value is within range
curr_waste + = ( curr_value - actual_target ) ; // This is the excess value which is added to the waste for the below comparison
// Adding another UTXO after this check could bring the waste down if the long term fee is higher than the current fee.
// However we are not going to explore that because this optimization for the waste is only done when we have hit our target
// value. Adding any more UTXOs will be just burning the UTXO; it will go entirely to fees. Thus we aren't going to
// explore any more UTXOs to avoid burning money like that.
if ( curr_waste < = best_waste ) {
best_selection = curr_selection ;
best_selection . resize ( utxo_pool . size ( ) ) ;
best_waste = curr_waste ;
}
curr_waste - = ( curr_value - actual_target ) ; // Remove the excess value as we will be selecting different coins now
backtrack = true ;
}
// Backtracking, moving backwards
if ( backtrack ) {
// Walk backwards to find the last included UTXO that still needs to have its omission branch traversed.
while ( ! curr_selection . empty ( ) & & ! curr_selection . back ( ) ) {
curr_selection . pop_back ( ) ;
curr_available_value + = utxo_pool . at ( curr_selection . size ( ) ) . effective_value ;
2018-07-17 19:23:46 +02:00
}
2018-03-05 22:29:37 +01:00
if ( curr_selection . empty ( ) ) { // We have walked back to the first utxo and no branch is untraversed. All solutions searched
break ;
}
// Output was included on previous iterations, try excluding now.
curr_selection . back ( ) = false ;
2018-07-19 04:45:26 +02:00
OutputGroup & utxo = utxo_pool . at ( curr_selection . size ( ) - 1 ) ;
2018-03-05 22:29:37 +01:00
curr_value - = utxo . effective_value ;
curr_waste - = utxo . fee - utxo . long_term_fee ;
} else { // Moving forwards, continuing down this branch
2018-07-19 04:45:26 +02:00
OutputGroup & utxo = utxo_pool . at ( curr_selection . size ( ) ) ;
2018-03-05 22:29:37 +01:00
// Remove this utxo from the curr_available_value utxo amount
curr_available_value - = utxo . effective_value ;
// Avoid searching a branch if the previous UTXO has the same value and same waste and was excluded. Since the ratio of fee to
// long term fee is the same, we only need to check if one of those values match in order to know that the waste is the same.
if ( ! curr_selection . empty ( ) & & ! curr_selection . back ( ) & &
utxo . effective_value = = utxo_pool . at ( curr_selection . size ( ) - 1 ) . effective_value & &
utxo . fee = = utxo_pool . at ( curr_selection . size ( ) - 1 ) . fee ) {
curr_selection . push_back ( false ) ;
} else {
// Inclusion branch first (Largest First Exploration)
curr_selection . push_back ( true ) ;
curr_value + = utxo . effective_value ;
curr_waste + = utxo . fee - utxo . long_term_fee ;
}
}
}
// Check for solution
if ( best_selection . empty ( ) ) {
return false ;
}
// Set output set
value_ret = 0 ;
for ( size_t i = 0 ; i < best_selection . size ( ) ; + + i ) {
if ( best_selection . at ( i ) ) {
2018-07-19 04:45:26 +02:00
util : : insert ( out_set , utxo_pool . at ( i ) . m_outputs ) ;
value_ret + = utxo_pool . at ( i ) . m_value ;
2018-03-05 22:29:37 +01:00
}
}
return true ;
}
2018-03-10 04:51:39 +01:00
2018-07-19 04:45:26 +02:00
static void ApproximateBestSubset ( const std : : vector < OutputGroup > & groups , const CAmount & nTotalLower , const CAmount & nTargetValue ,
2018-03-10 04:51:39 +01:00
std : : vector < char > & vfBest , CAmount & nBest , int iterations = 1000 )
{
std : : vector < char > vfIncluded ;
2018-07-19 04:45:26 +02:00
vfBest . assign ( groups . size ( ) , true ) ;
2018-03-10 04:51:39 +01:00
nBest = nTotalLower ;
FastRandomContext insecure_rand ;
for ( int nRep = 0 ; nRep < iterations & & nBest ! = nTargetValue ; nRep + + )
{
2018-07-19 04:45:26 +02:00
vfIncluded . assign ( groups . size ( ) , false ) ;
2018-03-10 04:51:39 +01:00
CAmount nTotal = 0 ;
bool fReachedTarget = false ;
for ( int nPass = 0 ; nPass < 2 & & ! fReachedTarget ; nPass + + )
{
2018-07-19 04:45:26 +02:00
for ( unsigned int i = 0 ; i < groups . size ( ) ; i + + )
2018-03-10 04:51:39 +01:00
{
//The solver here uses a randomized algorithm,
//the randomness serves no real security purpose but is just
//needed to prevent degenerate behavior and it is important
//that the rng is fast. We do not use a constant random sequence,
//because there may be some privacy improvement by making
//the selection random.
if ( nPass = = 0 ? insecure_rand . randbool ( ) : ! vfIncluded [ i ] )
{
2018-07-19 04:45:26 +02:00
nTotal + = groups [ i ] . m_value ;
2018-03-10 04:51:39 +01:00
vfIncluded [ i ] = true ;
if ( nTotal > = nTargetValue )
{
fReachedTarget = true ;
if ( nTotal < nBest )
{
nBest = nTotal ;
vfBest = vfIncluded ;
}
2018-07-19 04:45:26 +02:00
nTotal - = groups [ i ] . m_value ;
2018-03-10 04:51:39 +01:00
vfIncluded [ i ] = false ;
}
}
}
}
}
}
2018-07-19 04:45:26 +02:00
bool KnapsackSolver ( const CAmount & nTargetValue , std : : vector < OutputGroup > & groups , std : : set < CInputCoin > & setCoinsRet , CAmount & nValueRet )
2018-03-10 04:51:39 +01:00
{
setCoinsRet . clear ( ) ;
nValueRet = 0 ;
// List of values less than target
2018-07-19 04:45:26 +02:00
boost : : optional < OutputGroup > lowest_larger ;
std : : vector < OutputGroup > applicable_groups ;
2018-03-10 04:51:39 +01:00
CAmount nTotalLower = 0 ;
2018-07-19 04:45:26 +02:00
random_shuffle ( groups . begin ( ) , groups . end ( ) , GetRandInt ) ;
2018-03-10 04:51:39 +01:00
2018-07-19 04:45:26 +02:00
for ( const OutputGroup & group : groups ) {
if ( group . m_value = = nTargetValue ) {
util : : insert ( setCoinsRet , group . m_outputs ) ;
nValueRet + = group . m_value ;
2018-03-10 04:51:39 +01:00
return true ;
2018-07-19 04:45:26 +02:00
} else if ( group . m_value < nTargetValue + MIN_CHANGE ) {
applicable_groups . push_back ( group ) ;
nTotalLower + = group . m_value ;
} else if ( ! lowest_larger | | group . m_value < lowest_larger - > m_value ) {
lowest_larger = group ;
2018-03-10 04:51:39 +01:00
}
}
2018-07-19 04:45:26 +02:00
if ( nTotalLower = = nTargetValue ) {
for ( const auto & group : applicable_groups ) {
util : : insert ( setCoinsRet , group . m_outputs ) ;
nValueRet + = group . m_value ;
2018-03-10 04:51:39 +01:00
}
return true ;
}
2018-07-19 04:45:26 +02:00
if ( nTotalLower < nTargetValue ) {
if ( ! lowest_larger ) return false ;
util : : insert ( setCoinsRet , lowest_larger - > m_outputs ) ;
nValueRet + = lowest_larger - > m_value ;
2018-03-10 04:51:39 +01:00
return true ;
}
// Solve subset sum by stochastic approximation
2018-07-19 04:45:26 +02:00
std : : sort ( applicable_groups . begin ( ) , applicable_groups . end ( ) , descending ) ;
2018-03-10 04:51:39 +01:00
std : : vector < char > vfBest ;
CAmount nBest ;
2018-07-19 04:45:26 +02:00
ApproximateBestSubset ( applicable_groups , nTotalLower , nTargetValue , vfBest , nBest ) ;
if ( nBest ! = nTargetValue & & nTotalLower > = nTargetValue + MIN_CHANGE ) {
ApproximateBestSubset ( applicable_groups , nTotalLower , nTargetValue + MIN_CHANGE , vfBest , nBest ) ;
}
2018-03-10 04:51:39 +01:00
// If we have a bigger coin and (either the stochastic approximation didn't find a good solution,
// or the next bigger coin is closer), return the bigger coin
2018-07-19 04:45:26 +02:00
if ( lowest_larger & &
( ( nBest ! = nTargetValue & & nBest < nTargetValue + MIN_CHANGE ) | | lowest_larger - > m_value < = nBest ) ) {
util : : insert ( setCoinsRet , lowest_larger - > m_outputs ) ;
nValueRet + = lowest_larger - > m_value ;
} else {
for ( unsigned int i = 0 ; i < applicable_groups . size ( ) ; i + + ) {
if ( vfBest [ i ] ) {
util : : insert ( setCoinsRet , applicable_groups [ i ] . m_outputs ) ;
nValueRet + = applicable_groups [ i ] . m_value ;
2018-03-10 04:51:39 +01:00
}
2018-07-19 04:45:26 +02:00
}
2018-03-10 04:51:39 +01:00
if ( LogAcceptCategory ( BCLog : : SELECTCOINS ) ) {
2018-05-02 14:50:38 +02:00
LogPrint ( BCLog : : SELECTCOINS , " SelectCoins() best subset: " ) ; /* Continued */
2018-07-19 04:45:26 +02:00
for ( unsigned int i = 0 ; i < applicable_groups . size ( ) ; i + + ) {
2018-03-10 04:51:39 +01:00
if ( vfBest [ i ] ) {
2018-07-19 04:45:26 +02:00
LogPrint ( BCLog : : SELECTCOINS , " %s " , FormatMoney ( applicable_groups [ i ] . m_value ) ) ; /* Continued */
2018-03-10 04:51:39 +01:00
}
}
LogPrint ( BCLog : : SELECTCOINS , " total %s \n " , FormatMoney ( nBest ) ) ;
}
}
return true ;
}
2018-07-19 04:43:03 +02:00
/******************************************************************************
OutputGroup
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
void OutputGroup : : Insert ( const CInputCoin & output , int depth , bool from_me , size_t ancestors , size_t descendants ) {
m_outputs . push_back ( output ) ;
m_from_me & = from_me ;
m_value + = output . effective_value ;
m_depth = std : : min ( m_depth , depth ) ;
// m_ancestors is currently the max ancestor count for all coins in the group; however, this is
// not ideal, as a wallet will consider e.g. thirty 2-ancestor coins as having two ancestors,
// when in reality it has 60 ancestors.
m_ancestors = std : : max ( m_ancestors , ancestors ) ;
// m_descendants is the count as seen from the top ancestor, not the descendants as seen from the
// coin itself; thus, this value is accurate
m_descendants = std : : max ( m_descendants , descendants ) ;
effective_value = m_value ;
}
std : : vector < CInputCoin > : : iterator OutputGroup : : Discard ( const CInputCoin & output ) {
auto it = m_outputs . begin ( ) ;
while ( it ! = m_outputs . end ( ) & & it - > outpoint ! = output . outpoint ) + + it ;
if ( it = = m_outputs . end ( ) ) return it ;
m_value - = output . effective_value ;
effective_value - = output . effective_value ;
return m_outputs . erase ( it ) ;
}
bool OutputGroup : : EligibleForSpending ( const CoinEligibilityFilter & eligibility_filter ) const
{
return m_depth > = ( m_from_me ? eligibility_filter . conf_mine : eligibility_filter . conf_theirs )
& & m_ancestors < = eligibility_filter . max_ancestors
& & m_descendants < = eligibility_filter . max_descendants ;
}